Search Results

Now showing 1 - 2 of 2
  • Item
    Controlled synthesis of mussel-inspired Ag nanoparticle coatings with demonstrated in vitro and in vivo antibacterial properties
    (Amsterdam [u.a.] : Elsevier Science, 2021) Wang, Xiaowei; Xu, Kehui; Cui, Wendi; Yang, Xi; Maitz, Manfred F.; Li, Wei; Li, Xiangyang; Chen, Jialong
    The in-situ formation of silver nanoparticles (AgNPs) via dopamine-reduction of Ag+ has been widely utilized for titanium implants to introduce antibacterial properties. In previous studies, the preparation of AgNPs has focused on controlling the feeding concentrations, while the pH of the reaction solution was ignored. Herein, we systematically determined the influence of various pH (4, 7, 10) and Ag+ concentrations (0.01, 0.1 mg/mL) on the AgNPs formation, followed by the evaluation of the antibacterial properties in vitro and in vivo. The results revealed that an alkaline environment was favourable for AgNP formation and resulted in more particles. Although the AgNPs bearing Ti had lower biocompatibilities, it was significantly improved after 7 days of mineralization in simulated body fluid. The outstanding antibacterial property of the AgNPs was well maintained after one day and seven days of implantation. Moreover, 3D micro-CT modelling showed that the pH 10/0.1 group exhibited remarkable osteogenesis, which may be due to their strong antibacterial properties and ability to promote mineralization. Therefore, we have demonstrated that the solution pH was as important as the feeding Ag+ concentration in determining AgNP formation, and it has paved the way for developing various AgNP-loaded surfaces that could meet different antibacterial needs.
  • Item
    High resolution spectroscopy reveals fibrillation inhibition pathways of insulin
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2016) Deckert-Gaudig, Tanja; Deckert, Volker
    Fibril formation implies the conversion of a protein’s native secondary structure and is associated with several neurodegenerative diseases. A better understanding of fibrillation inhibition and fibril dissection requires nanoscale molecular characterization of amyloid structures involved. Tip-enhanced Raman scattering (TERS) has already been used to chemically analyze amyloid fibrils on a sub-protein unit basis. Here, TERS in combination with atomic force microscopy (AFM), and conventional Raman spectroscopy characterizes insulin assemblies generated during inhibition and dissection experiments in the presence of benzonitrile, dimethylsulfoxide, quercetin, and β-carotene. The AFM topography indicates formation of filamentous or bead-like insulin self-assemblies. Information on the secondary structure of bulk samples and of single aggregates is obtained from standard Raman and TERS measurements. In particular the high spatial resolution of TERS reveals the surface conformations associated with the specific agents. The insulin aggregates formed under different inhibition and dissection conditions can show a similar morphology but differ in their β-sheet structure content. This suggests different aggregation pathways where the prevention of the β-sheet stacking of the peptide chains plays a major role. The presented approach is not limited to amyloid-related reasearch but can be readily applied to systems requiring extremely surface-sensitive characterization without the need of labels.