Search Results

Now showing 1 - 5 of 5
  • Item
    Photo-Cross-Linked Dual-Responsive Hollow Capsules Mimicking Cell Membrane for Controllable Cargo Post-Encapsulation and Release
    (Weinheim : Wiley-VCH, 2016) Liu, Xiaoling; Appelhans, Dietmar; Wei, Qiang; Voit, Brigitte
    Multifunctional and responsive hollow capsules are ideal candidates to establish highly sophisticated compartments mimicking cell membranes for controllable bio-inspired functions. For this purpose pH and temperature dual-responsive and photo-cross-linked hollow capsules, based on silica-templated layer-by-layer approach by using poly(N-isopropyl acrylamide)-blockpolymethacrylate) and polyallylamine, have been prepared to use them for the subsequent and easily available post-encapsulation process of proteinlike macromolecules at room temperature and pH 7.4 and their controllable release triggered by stimuli. The uptake and release properties of the hollow capsules for cargos are highly affected by changes in the external stimuli temperature (25, 37, or 45 °C) and internal stimuli pH of the phosphate-containing buffer solution (5.5 or 7.4), by the degree of photo-cross-linking, and the size of cargo. The photo-cross-linked and dual stimuli-responsive hollow capsules with different membrane permeability can be considered as attractive material for mimicking cell functions triggered by controllable uptake and release of different up to 11 nm sized biomolecules.
  • Item
    Structural and electronic properties of epitaxial multilayer h-BN on Ni(111) for spintronics applications
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2016) Tonkikh, A.A.; Voloshina, E.N.; Werner, P.; Blumtritt, H.; Senkovskiy, B.; Güntherodt, G.; Parkin, S.S.P.; Dedkov, Yu. S.
    Hexagonal boron nitride (h-BN) is a promising material for implementation in spintronics due to a large band gap, low spin-orbit coupling, and a small lattice mismatch to graphene and to close-packed surfaces of fcc-Ni(111) and hcp-Co(0001). Epitaxial deposition of h-BN on ferromagnetic metals is aimed at small interface scattering of charge and spin carriers. We report on the controlled growth of h-BN/Ni(111) by means of molecular beam epitaxy (MBE). Structural and electronic properties of this system are investigated using cross-section transmission electron microscopy (TEM) and electron spectroscopies which confirm good agreement with the properties of bulk h-BN. The latter are also corroborated by density functional theory (DFT) calculations, revealing that the first h-BN layer at the interface to Ni is metallic. Our investigations demonstrate that MBE is a promising, versatile alternative to both the exfoliation approach and chemical vapour deposition of h-BN.
  • Item
    Topological transitions in ac/dc-driven superconductor nanotubes
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2022) Fomin, Vladimir M.; Rezaev, Roman O.; Dobrovolskiy, Oleksandr V.
    Extending of nanostructures into the third dimension has become a major research avenue in condensed-matter physics, because of geometry- and topology-induced phenomena. In this regard, superconductor 3D nanoarchitectures feature magnetic field inhomogeneity, non-trivial topology of Meissner currents and complex dynamics of topological defects. Here, we investigate theoretically topological transitions in the dynamics of vortices and slips of the phase of the order parameter in open superconductor nanotubes under a modulated transport current. Relying upon the time-dependent Ginzburg–Landau equation, we reveal two distinct voltage regimes when (i) a dominant part of the tube is in either the normal or superconducting state and (ii) a complex interplay between vortices, phase-slip regions and screening currents determines a rich FFT voltage spectrum. Our findings unveil novel dynamical states in superconductor open nanotubes, such as paraxial and azimuthal phase-slip regions, their branching and coexistence with vortices, and allow for control of these states by superimposed dc and ac current stimuli.
  • Item
    Heat capacity signature of frustrated trimerons in magnetite
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2020) Sahling, S.; Lorenzo, J.E.; Remenyi, G.; Marin, C.; Katkov, V.L.; Osipov, V.A.
    Recently it has been proposed that the long-range electronic order formed by trimerons in magnetite should be frustrated due to the great degeneracy of arrangements linking trimerons. This result has important consequences as charge ordering from the condensed minority band electrons leads to a complex 3D antiferro orbital order pattern. Further more, the corner sharing tetrahedra structure of spinel B-sites supports frustration for antiferromagnetic alignments. Therefore frustration due to competing interactions will itself induce disorder and very likely frustration in the spin orientations. Here we present very low temperature specific heat data that show two deviations to the magnons and phonons contributions, that we analyze in terms of Schottky-type anomalies. The first one is associated with the thermal activation across both ferroelastic twin and ferromagnetic anti-phase domains. The second Schottky-type anomaly displays an inverse (1/H) field dependence which is a direct indication of the disordered glassy network with macroscopically degenerated singular ground states. © 2020, The Author(s).
  • Item
    High resolution spectroscopy reveals fibrillation inhibition pathways of insulin
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2016) Deckert-Gaudig, Tanja; Deckert, Volker
    Fibril formation implies the conversion of a protein’s native secondary structure and is associated with several neurodegenerative diseases. A better understanding of fibrillation inhibition and fibril dissection requires nanoscale molecular characterization of amyloid structures involved. Tip-enhanced Raman scattering (TERS) has already been used to chemically analyze amyloid fibrils on a sub-protein unit basis. Here, TERS in combination with atomic force microscopy (AFM), and conventional Raman spectroscopy characterizes insulin assemblies generated during inhibition and dissection experiments in the presence of benzonitrile, dimethylsulfoxide, quercetin, and β-carotene. The AFM topography indicates formation of filamentous or bead-like insulin self-assemblies. Information on the secondary structure of bulk samples and of single aggregates is obtained from standard Raman and TERS measurements. In particular the high spatial resolution of TERS reveals the surface conformations associated with the specific agents. The insulin aggregates formed under different inhibition and dissection conditions can show a similar morphology but differ in their β-sheet structure content. This suggests different aggregation pathways where the prevention of the β-sheet stacking of the peptide chains plays a major role. The presented approach is not limited to amyloid-related reasearch but can be readily applied to systems requiring extremely surface-sensitive characterization without the need of labels.