Search Results

Now showing 1 - 2 of 2
  • Item
    Direct estimation of the global distribution of vertical velocity within cirrus clouds
    (London : Nature Publishing Group, 2017) Barahona, Donifan; Molod, Andrea; Kalesse, Heike
    Cirrus clouds determine the radiative balance of the upper troposphere and the transport of water vapor across the tropopause. The representation of vertical wind velocity, W, in atmospheric models constitutes the largest source of uncertainty in the calculation of the cirrus formation rate. Using global atmospheric simulations with a spatial resolution of 7 km we obtain for the first time a direct estimate of the distribution of W at the scale relevant for cirrus formation, validated against long-term observations at two different ground sites. The standard deviation in W, σ w, varies widely over the globe with the highest values resulting from orographic uplift and convection, and the lowest occurring in the Arctic. Globally about 90% of the simulated σ w values are below 0.1 m s-1 and about one in 104 cloud formation events occur in environments with σ w > 0.8 m s-1. Combining our estimate with reanalysis products and an advanced cloud formation scheme results in lower homogeneous ice nucleation frequency than previously reported, and a decreasing average ice crystal concentration with decreasing temperature. These features are in agreement with observations and suggest that the correct parameterization of σ w is critical to simulate realistic cirrus properties.
  • Item
    Impact of energy dissipation on interface shapes and on rates for dewetting from liquid substrates
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2018) Peschka, Dirk; Bommer, Stefan; Jachalski, Sebastian; Seemann, Ralf; Wagner, Barbara
    We revisit the fundamental problem of liquid-liquid dewetting and perform a detailed comparison of theoretical predictions based on thin-film models with experimental measurements obtained by atomic force microscopy. Specifically, we consider the dewetting of a liquid polystyrene layer from a liquid polymethyl methacrylate layer, where the thicknesses and the viscosities of both layers are similar. Using experimentally determined system parameters like viscosity and surface tension, an excellent agreement of experimentally and theoretically obtained rim profile shapes are obtained including the liquid-liquid interface and even dewetting rates. Our new energetic approach additionally allows to assess the physical importance of different contributions to the energy-dissipation mechanism, for which we analyze the local flow fields and the local dissipation rates. Using this approach, we explain why dewetting rates for liquid-liquid systems follow no universal power law, despite the fact that experimental velocities are almost constant. This is in contrast to dewetting scenarios on solid substrates and in contrast to previous results for liquid-liquid substrates using heuristic approaches.