Search Results

Now showing 1 - 5 of 5
  • Item
    Skin tolerant inactivation of multiresistant pathogens using far-UVC LEDs
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2021) Glaab, Johannes; Lobo-Ploch, Neysha; Cho, Hyun Kyong; Filler, Thomas; Gundlach, Heiko; Guttmann, Martin; Hagedorn, Sylvia; Lohan, Silke B.; Mehnke, Frank; Schleusener, Johannes; Sicher, Claudia; Sulmoni, Luca; Wernicke, Tim; Wittenbecher, Lucas; Woggon, Ulrike; Zwicker, Paula; Kramer, Axel; Meinke, Martina C.; Kneissl, Michael; Weyers, Markus; Winterwerber, Ulrike; Einfeldt, Sven
    Multiresistant pathogens such as methicillin-resistant Staphylococcus aureus (MRSA) cause serious postoperative infections. A skin tolerant far-UVC (< 240 nm) irradiation system for their inactivation is presented here. It uses UVC LEDs in combination with a spectral filter and provides a peak wavelength of 233 nm, with a full width at half maximum of 12 nm, and an irradiance of 44 µW/cm2. MRSA bacteria in different concentrations on blood agar plates were inactivated with irradiation doses in the range of 15–40 mJ/cm2. Porcine skin irradiated with a dose of 40 mJ/cm2 at 233 nm showed only 3.7% CPD and 2.3% 6-4PP DNA damage. Corresponding irradiation at 254 nm caused 11–14 times higher damage. Thus, the skin damage caused by the disinfectant doses is so small that it can be expected to be compensated by the skin's natural repair mechanisms. LED-based far-UVC lamps could therefore soon be used in everyday clinical practice to eradicate multiresistant pathogens directly on humans.
  • Item
    Hyperspectral terahertz imaging with electro-optic dual combs and a FET-based detector
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2020) Martín-Mateos, Pedro; Čibiraitė-Lukenskienė, Dovilė; Barreiro, Roberto; de Dios, Cristina; Lisauskas, Alvydas; Krozer, Viktor; Acedo, Pablo
    In this paper, a terahertz hyperspectral imaging architecture based on an electro-optic terahertz dual-comb source is presented and demonstrated. In contrast to single frequency sources, this multi-heterodyne system allows for the characterization of the whole spectral response of the sample in parallel for all the frequency points along the spectral range of the system. This hence provides rapid, highly consistent results and minimizes measurement artifacts. The terahertz illumination signal can be tailored (in spectral coverage and resolution) with high flexibility to meet the requirements of any particular application or experimental scenario while maximizing the signal-to-noise ratio of the measurement. Besides this, the system provides absolute frequency accuracy and a very high coherence that allows for direct signal detection without inter-comb synchronization mechanisms, adaptive acquisition, or post-processing. Using a field-effect transistor-based terahertz resonant 300 GHz detector and the raster-scanning method we demonstrate the two-dimensional hyperspectral imaging of samples of different kinds to illustrate the remarkable capabilities of this innovative architecture. A proof-of-concept demonstration has been performed in which tree leaves and a complex plastic fragment have been analyzed in the 300 GHz range with a frequency resolution of 10 GHz.
  • Item
    Refractory metal-based ohmic contacts on β-Ga2O3 using TiW
    (Melville, NY : AIP Publ., 2022) Tetzner, Kornelius; Schewski, Robert; Popp, Andreas; Anooz, Saud Bin; Chou, Ta-Shun; Ostermay, Ina; Kirmse, Holm; Würfl, Joachim
    The present work investigates the use of the refractory metal alloy TiW as a possible candidate for the realization of ohmic contacts to the ultrawide bandgap semiconductor β-Ga2O3. Ohmic contact properties were analyzed by transfer length measurements of TiW contacts annealed at temperatures between 400 and 900 °C. Optimum contact properties with a contact resistance down to 1.5 × 10-5 ω cm2 were achieved after annealing at 700 °C in nitrogen on highly doped β-Ga2O3. However, a significant contact resistance increase was observed at annealing temperatures above 700 °C. Cross-sectional analyses of the contacts using scanning transmission electron microscopy revealed the formation of a TiOx interfacial layer of 3-5 nm between TiW and β-Ga2O3. This interlayer features an amorphous structure and most probably possesses a high amount of vacancies and/or Ga impurities supporting charge carrier injection. Upon annealing at temperatures of 900 °C, the interlayer increases in thickness up to 15 nm, featuring crystalline-like properties, suggesting the formation of rutile TiO2. Although severe morphological changes at higher annealing temperatures were also verified by atomic force microscopy, the root cause for the contact resistance increase is attributed to the structural changes in thickness and crystallinity of the interfacial layer.
  • Item
    16.3 w peak‐power pulsed all‐diode laser based multi‐wavelength master‐oscillator power‐amplifier system at 964 nm
    (Basel : MDPI, 2021) Vu, Thi Nghiem; Tien, Tran Quoc; Sumpf, Bernd; Klehr, Andreas; Fricke, Jörg; Wenzel, Hans; Tränkle, Günther
    An all-diode laser-based master oscillator power amplifier (MOPA) configuration for the generation of ns-pulses with high peak power, stable wavelength and small spectral line width is presented. The MOPA emits alternating at two wavelengths in the spectral range between 964 nm and 968 nm, suitable for the detection of water vapor by absorption spectroscopy. The monolithic master oscillator (MO) consists of two slightly detuned distributed feedback laser branches, whose emission is combined in a Y-coupler. The two emission wavelengths can be adjusted by varying the current or temperature to an absorption line and to a non-absorbing region. The power amplifier (PA) consists of a ridge-waveguide (RW) section and a tapered section, monolithically integrated within one chip. The RW section of the PA acts as an optical gate and converts the continuous wave input beam emitted by the MO into a sequence of short optical pulses, which are subsequently amplified by the tapered section to boost the output power. For a pulse width of 8 ns, a peak power of 16.3 W and a side mode suppression ratio of more than 37 dB are achieved at a repetition rate of 25 kHz. The measured spectral width of 10 pm, i.e., 0.1 cm−1, is limited by the resolution of the optical spectrum analyzer. The generated pulses emitting alternating at two wavelengths can be utilized in a differential absorption light detection and ranging system.
  • Item
    Versatile high power pulse-laser source for pico- and nanosecond optical pulses
    (London : Institute of Physics, 2020) Liero, Armin; Klehr, Andreas; Knigge, Andrea; Heinrich, Wolfgang
    This paper presents a pulse-laser source for the generation of ps and ns laser pulses with more than 50 W peak output power. The final stages of the drivers use GaN transistors and are capable of switching currents of 0.8 A with 200 ps minimum pulse width and 50 A with 3 ns minimum pulse width. The pulses can be externally triggered by ECL logic. Both single-pulse and pulse train modes are possible.