Search Results

Now showing 1 - 2 of 2
  • Item
    Biomedical sensing and imaging with optical fibers—Innovation through convergence of science disciplines
    (College Park : American Institute of Physics, 2018) Li, Jiawen; Ebendorff-Heidepriem, Heike; Gibson, Brant C.; Greentree, Andrew D.; Hutchinson, Mark R.; Jia, Peipei; Kostecki, Roman; Liu, Guozhen; Orth, Antony; Ploschner, Martin; Schartner, Erik P.; Warren-Smith, Stephen C.; Zhang, Kaixin; Tsiminis, Georgios; Goldys, Ewa
    The probing of physiological processes in living organisms is a grand challenge that requires bespoke analytical tools. Optical fiber probes offer a minimally invasive approach to report physiological signals from specific locations inside the body. This perspective article discusses a wide range of such fiber probes developed at the Australian Research Council Centre of Excellence for Nanoscale BioPhotonics. Our fiber platforms use a range of sensing modalities, including embedded nanodiamonds for magnetometry, interferometric fiber cavities for refractive index sensing, and tailored metal coatings for surface plasmon resonance sensing. Other fiber probes exploit molecularly sensitive Raman scattering or fluorescence where optical fibers have been combined with chemical and immunosensors. Fiber imaging probes based on interferometry and computational imaging are also discussed as emerging in vivo diagnostic devices. We provide examples to illustrate how the convergence of multiple scientific disciplines generates opportunities for the fiber probes to address key challenges in real-time in vivo diagnostics. These future fiber probes will enable the asking and answering of scientific questions that were never possible before.
  • Item
    One-shot phase-recovery using a cellphone RGB camera on a Jamin-Lebedeff microscope
    (San Francisco, California, US : PLOS, 2019) Diederich, Benedict; Marsikova, Barbora; Amos, Brad; Heintzmann, Rainer
    Jamin-Lebedeff (JL) polarization interference microscopy is a classical method for determining the change in the optical path of transparent tissues. Whilst a differential interference contrast (DIC) microscopy interferes an image with itself shifted by half a point spread function, the shear between the object and reference image in a JL-microscope is about half the field of view. The optical path difference (OPD) between the sample and reference region (assumed to be empty) is encoded into a color by white-light interference. From a color-table, the Michel-Levy chart, the OPD can be deduced. In cytology JL-imaging can be used as a way to determine the OPD which closely corresponds to the dry mass per area of cells in a single image. Like in other interference microscopy methods (e.g. holography), we present a phase retrieval method relying on single-shot measurements only, thus allowing real-time quantitative phase measurements. This is achieved by adding several customized 3D-printed parts (e.g. rotational polarization-filter holders) and a modern cellphone with an RGB-camera to the Jamin-Lebedeff setup, thus bringing an old microscope back to life. The algorithm is calibrated using a reference image of a known phase object (e.g. optical fiber). A gradient-descent based inverse problem generates an inverse look-up-table (LUT) which is used to convert the measured RGB signal of a phase-sample into an OPD. To account for possible ambiguities in the phase-map or phase-unwrapping artifacts we introduce a total-variation based regularization. We present results from fixed and living biological samples as well as reference samples for comparison.