Search Results

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Item

Future heat stress to reduce people’s purchasing power

2021, Kuhla, Kilian, Willner, Sven Norman, Otto, Christian, Wenz, Leonie, Levermann, Anders

With increasing carbon emissions rising temperatures are likely to impact our economies and societies profoundly. In particular, it has been shown that heat stress can strongly reduce labor productivity. The resulting economic perturbations can propagate along the global supply network. Here we show, using numerical simulations, that output losses due to heat stress alone are expected to increase by about 24% within the next 20 years, if no additional adaptation measures are taken. The subsequent market response with rising prices and supply shortages strongly reduces the consumers’ purchasing power in almost all countries including the US and Europe with particularly strong effects in India, Brazil, and Indonesia. As a consequence, the producing sectors in many regions temporarily benefit from higher selling prices while decreasing their production in quantity, whereas other countries suffer losses within their entire national economy. Our results stress that, even though climate shocks may stimulate economic activity in some regions and some sectors, their unpredictability exerts increasing pressure on people’s livelihood.

Loading...
Thumbnail Image
Item

Three step flow focusing enables image-based discrimination and sorting of late stage 1 Haematococcus pluvialis cells

2021, Kraus, Daniel, Kleiber, Andreas, Ehrhardt, Enrico, Leifheit, Matthias, Horbert, Peter, Urban, Matthias, Gleichmann, Nils, Mayer, Guenter, Popp, Juergen, Henkel, Thomas

Label-free and gentle separation of cell stages with desired target properties from mixed stage populations are a major research task in modern biotechnological cultivation process and optimization of micro algae. The reported microfluidic sorter system (MSS) allows the subsequent investigation of separated subpopulations. The implementation of a viability preserving MSS is shown for separation of late stage 1 Haematococcus pluvialis (HP) cells form a mixed stage population. The MSS combines a three-step flow focusing unit for aligning the cells in single file transportation mode at the center of the microfluidic channel with a pure hydrodynamic sorter structure for cell sorting. Lateral displacement of the cells into one of the two outlet channels is generated by piezo-actuated pump chambers. In-line decision making for sorting is based on a user-definable set of image features and properties. The reported MSS significantly increased the purity of target cells in the sorted population (94%) in comparison to the initial mixed stage population (19%).