Search Results

Now showing 1 - 10 of 43
  • Item
    Inhibition of cardiac CaMKII to cure heart failure: step by step towards translation?
    (Heidelberg : Springer, 2016) Cuello, Friederike; Lorenz, Kristina
    [no abstract available]
  • Item
    An experimental study on the influence of trace impurities on ionization of atmospheric noble gas dielectric barrier discharges
    (Cambridge : Royal Society of Chemistry, 2016) Klute, F.D.; Schütz, A.; Michels, A.; Vadla, C.; Veza, D.; Horvatic, V.; Franzke, J.
    While the influence of trace impurities in noble gas discharges is well established in theoretical work, experimental approaches are difficult. Particularly the effects of trace concentrations of N2 on He discharges are complicated to investigate due to the fact that for He 5.0 the purity of He is only 99.999%. This corresponds to a residual concentration of 10 ppm, thereof 3 ppm of N2, in He. Matters are made difficult by the fact that He DBD plasmajets are normally operated under an ambient atmosphere, which has a high abundance of N2. This work tackles these problems from two sides. The first approach is to operate a DBD plasmajet under a quasi-controlled He atmosphere, therefore diminishing the effect of atmospheric N2 and making a defined contamination with N2 possible. The second approach is using Ar as the operating gas and introducing propane (C3H8) as a suitable substitute impurity like N2 in He. As will be shown both discharges in either He or Ar, with their respective impurity show the same qualitative behaviour.
  • Item
    Proteome-wide analysis reveals an age-associated cellular phenotype of in situ aged human fibroblasts
    (Orchard Park : Impact Journals, 2014) Waldera-Lupa, Daniel M.; Kalfalah, Faiza; Florea, Ana-Maria; Sass, Steffen; Kruse, Fabian; Rieder, Vera; Tigges, Julia; Fritsche, Ellen; Krutmann, Jean; Busch, Hauke; Boerries, Melanie; Meyer, Helmut E.; Boege, Fritz; Theis, Fabian; Reifenberger, Guido; Stühle, Kai
    We analyzed an ex vivo model of in situ aged human dermal fibroblasts, obtained from 15 adult healthy donors from three different age groups using an unbiased quantitative proteome-wide approach applying label-free mass spectrometry. Thereby, we identified 2409 proteins, including 43 proteins with an age-associated abundance change. Most of the differentially abundant proteins have not been described in the context of fibroblasts' aging before, but the deduced biological processes confirmed known hallmarks of aging and led to a consistent picture of eight biological categories involved in fibroblast aging, namely proteostasis, cell cycle and proliferation, development and differentiation, cell death, cell organization and cytoskeleton, response to stress, cell communication and signal transduction, as well as RNA metabolism and translation. The exhaustive analysis of protein and mRNA data revealed that 77 % of the age-associated proteins were not linked to expression changes of the corresponding transcripts. This is in line with an associated miRNA study and led us to the conclusion that most of the age-associated alterations detected at the proteome level are likely caused post-transcriptionally rather than by differential gene expression. In summary, our findings led to the characterization of novel proteins potentially associated with fibroblast aging and revealed that primary cultures of in situ aged fibroblasts are characterized by moderate age-related proteomic changes comprising the multifactorial process of aging.
  • Item
    Raf kinases mediate the phosphorylation of eukaryotic translation elongation factor 1A and regulate its stability in eukaryotic cells
    (London : Nature Publishing Group, 2012) Sanges, C.; Scheuermann, C.; Zahedi, R.P.; Sickmann, A.; Lamberti, A.; Migliaccio, N.; Baljuls, A.; Marra, M.; Zappavigna, S.; Reinders, J.; Rapp, U.; Abbruzzese, A.; Caraglia, M.; Arcari, P.
    We identified eukaryotic translation elongation factor 1A (eEF1A) Raf-mediated phosphorylation sites and defined their role in the regulation of eEF1A half-life and of apoptosis of human cancer cells. Mass spectrometry identified in vitro S21 and T88 as phosphorylation sites mediated by B-Raf but not C-Raf on eEF1A1 whereas S21 was phosphorylated on eEF1A2 by both B- and C-Raf. Interestingly, S21 belongs to the first eEF1A GTP/GDP-binding consensus sequence. Phosphorylation of S21 was strongly enhanced when both eEF1A isoforms were preincubated prior the assay with C-Raf, suggesting that the eEF1A isoforms can heterodimerize thus increasing the accessibility of S21 to the phosphate. Overexpression of eEF1A1 in COS 7 cells confirmed the phosphorylation of T88 also in vivo. Compared with wt, in COS 7 cells overexpressed phosphodeficient (A) and phospho-mimicking (D) mutants of eEF1A1 (S21A/D and T88A/D) and of eEF1A2 (S21A/D), resulted less stable and more rapidly proteasome degraded. Transfection of S21 A/D eEF1A mutants in H1355 cells increased apoptosis in comparison with the wt isoforms. It indicates that the blockage of S21 interferes with or even supports C-Raf induced apoptosis rather than cell survival. Raf-mediated regulation of this site could be a crucial mechanism involved in the functional switching of eEF1A between its role in protein biosynthesis and its participation in other cellular processes.
  • Item
    During early stages of cancer, neutrophils initiate anti-tumor immune responses in tumor-draining lymph nodes
    (Maryland Heights, MO : Cell Press, 2022) Pylaeva, Ekaterina; Korschunow, Georg; Spyra, Ilona; Bordbari, Sharareh; Siakaeva, Elena; Ozel, Irem; Domnich, Maksim; Squire, Anthony; Hasenberg, Anja; Thangavelu, Kruthika; Hussain, Timon; Goetz, Moritz; Lang, Karl S; Gunzer, Matthias; Hansen, Wiebke; Buer, Jan; Bankfalvi, Agnes; Lang, Stephan; Jablonska, Jadwiga
    Tumor-draining lymph nodes (LNs) play a crucial role during cancer spread and in initiation of anti-cancer adaptive immunity. Neutrophils form a substantial population of cells in LNs with poorly understood functions. Here, we demonstrate that, during head and neck cancer (HNC) progression, tumor-associated neutrophils transmigrate to LNs and shape anti-tumor responses in a stage-dependent manner. In metastasis-free stages (N0), neutrophils develop an antigen-presenting phenotype (HLA-DR+CD80+CD86+ICAM1+PD-L1-) and stimulate T cells (CD27+Ki67highPD-1-). LN metastases release GM-CSF and via STAT3 trigger development of PD-L1+ immunosuppressive neutrophils, which repress T cell responses. The accumulation of neutrophils in T cell-rich zones of LNs in N0 constitutes a positive predictor for 5-year survival, while increased numbers of neutrophils in LNs of N1-3 stages predict poor prognosis in HNC. These results suggest a dual role of neutrophils as essential regulators of anti-cancer immunity in LNs and argue for approaches fostering immunostimulatory activity of these cells during cancer therapy.
  • Item
    Regulation of the tumor-suppressor function of the class III phosphatidylinositol 3-kinase complex by ubiquitin and SUMO
    (Basel : MDPI, 2014) Reidick, Christina; El Magraoui, Fouzi; Meyer, Helmut E.; Stenmark, Harald; Platta, Harald W.
    The occurrence of cancer is often associated with a dysfunction in one of the three central membrane-involution processes—autophagy, endocytosis or cytokinesis. Interestingly, all three pathways are controlled by the same central signaling module: the class III phosphatidylinositol 3-kinase (PI3K-III) complex and its catalytic product, the phosphorylated lipid phosphatidylinositol 3-phosphate (PtdIns3P). The activity of the catalytic subunit of the PI3K-III complex, the lipid-kinase VPS34, requires the presence of the membrane-targeting factor VPS15 as well as the adaptor protein Beclin 1. Furthermore, a growing list of regulatory proteins associates with VPS34 via Beclin 1. These accessory factors define distinct subunit compositions and thereby guide the PI3K-III complex to its different cellular and physiological roles. Here we discuss the regulation of the PI3K-III complex components by ubiquitination and SUMOylation. Especially Beclin 1 has emerged as a highly regulated protein, which can be modified with Lys11-, Lys48- or Lys63-linked polyubiquitin chains catalyzed by distinct E3 ligases from the RING-, HECT-, RBR- or Cullin-type. We also point out other cross-links of these ligases with autophagy in order to discuss how these data might be merged into a general concept.
  • Item
    Oxaliplatin-DNA adduct formation in white blood cells of cancer patients
    (London : Nature Publishing Group, 2008) Pieck, A.C.; Drescher, A.; Wiesmann, K.G.; Messerschmidt, J.; Weber, G.; Strumberg, D.; Hilger, R.A.; Scheulen, M.E.; Jaehde, U.
    In this study, we investigated the kinetics of oxaliplatin-DNA adduct formation in white blood cells of cancer patients in relation to efficacy as well as oxaliplatin-associated neurotoxicity. Thirty-seven patients with various solid tumours received 130 mg m−2 oxaliplatin as a 2-h infusion. Oxaliplatin-DNA adduct levels were measured in the first cycle using adsorptive stripping voltammetry. Platinum concentrations were measured in ultrafiltrate and plasma using a validated flameless atomic absorption spectrometry method. DNA adduct levels showed a characteristic time course, but were not correlated to platinum pharmacokinetics and varied considerably among individuals. In patients showing tumour response, adduct levels after 24 and 48 h were significantly higher than in nonresponders. Oxaliplatin-induced neurotoxicity was more pronounced but was not significantly different in patients with high adduct levels. The potential of oxaliplatin-DNA adduct measurements as pharmacodynamic end point should be further investigated in future trials.
  • Item
    Metabolic Profiling of Thymic Epithelial Tumors Hints to a Strong Warburg Effect, Glutaminolysis and Precarious Redox Homeostasis as Potential Therapeutic Targets
    (Basel : MDPI, 2022) Alwahsh, Mohammad; Knitsch, Robert; Marchan, Rosemarie; Lambert, Jörg; Hoerner, Christian; Zhang, Xiaonan; Schalke, Berthold; Lee, De-Hyung; Bulut, Elena; Graeter, Thomas; Ott, German; Kurz, Katrin S.; Preissler, Gerhard; Schölch, Sebastian; Farhat, Joviana; Yao, Zhihan; Sticht, Carsten; Ströbel, Philipp; Hergenröder, Roland; Marx, Alexander; Belharazem, Djeda
    Thymomas and thymic carcinomas (TC) are malignant thymic epithelial tumors (TETs) with poor outcome, if non-resectable. Metabolic signatures of TETs have not yet been studied and may offer new therapeutic options. Metabolic profiles of snap-frozen thymomas (WHO types A, AB, B1, B2, B3, n = 12) and TCs (n = 3) were determined by high resolution magic angle spinning 1H nuclear magnetic resonance (HRMAS 1H-NMR) spectroscopy. Metabolite-based prediction of active KEGG metabolic pathways was achieved with MetPA. In relation to metabolite-based metabolic pathways, gene expression signatures of TETs (n = 115) were investigated in the public “The Cancer Genome Atlas” (TCGA) dataset using gene set enrichment analysis. Overall, thirty-seven metabolites were quantified in TETs, including acetylcholine that was not previously detected in other nonendocrine cancers. Metabolite-based cluster analysis distinguished clinically indolent (A, AB, B1) and aggressive TETs (B2, B3, TCs). Using MetPA, six KEGG metabolic pathways were predicted to be activated, including proline/arginine, glycolysis and glutathione pathways. The activated pathways as predicted by metabolite-profiling were generally enriched transcriptionally in the independent TCGA dataset. Shared high lactic acid and glutamine levels, together with associated gene expression signatures suggested a strong “Warburg effect”, glutaminolysis and redox homeostasis as potential vulnerabilities that need validation in a large, independent cohort of aggressive TETs. If confirmed, targeting metabolic pathways may eventually prove as adjunct therapeutic options in TETs, since the metabolic features identified here are known to confer resistance to cisplatin-based chemotherapy, kinase inhibitors and immune checkpoint blockers, i.e., currently used therapies for non-resectable TETs.
  • Item
    Identification of herbal teas and their compounds eliciting antiviral activity against SARS-CoV-2 in vitro
    (Heidelberg : Springer, 2022) Le-Trilling, Vu Thuy Khanh; Mennerich, Denise; Schuler, Corinna; Sakson, Roman; Lill, Julia K.; Kasarla, Siva Swapna; Kopczynski, Dominik; Loroch, Stefan; Flores-Martinez, Yulia; Katschinski, Benjamin; Wohlgemuth, Kerstin; Gunzer, Matthias; Meyer, Folker; Phapale, Prasad; Dittmer, Ulf; Sickmann, Albert; Trilling, Mirko
    Background: The SARS-CoV-2/COVID-19 pandemic has inflicted medical and socioeconomic havoc, and despite the current availability of vaccines and broad implementation of vaccination programs, more easily accessible and cost-effective acute treatment options preventing morbidity and mortality are urgently needed. Herbal teas have historically and recurrently been applied as self-medication for prophylaxis, therapy, and symptom alleviation in diverse diseases, including those caused by respiratory viruses, and have provided sources of natural products as basis for the development of therapeutic agents. To identify affordable, ubiquitously available, and effective treatments, we tested herbs consumed worldwide as herbal teas regarding their antiviral activity against SARS-CoV-2. Results: Aqueous infusions prepared by boiling leaves of the Lamiaceae perilla and sage elicit potent and sustained antiviral activity against SARS-CoV-2 when applied after infection as well as prior to infection of cells. The herbal infusions exerted in vitro antiviral effects comparable to interferon-β and remdesivir but outperformed convalescent sera and interferon-α2 upon short-term treatment early after infection. Based on protein fractionation analyses, we identified caffeic acid, perilla aldehyde, and perillyl alcohol as antiviral compounds. Global mass spectrometry (MS) analyses performed comparatively in two different cell culture infection models revealed changes of the proteome upon treatment with herbal infusions and provided insights into the mode of action. As inferred by the MS data, induction of heme oxygenase 1 (HMOX-1) was confirmed as effector mechanism by the antiviral activity of the HMOX-1-inducing compounds sulforaphane and fraxetin. Conclusions: In conclusion, herbal teas based on perilla and sage exhibit antiviral activity against SARS-CoV-2 including variants of concern such as Alpha, Beta, Delta, and Omicron, and we identified HMOX-1 as potential therapeutic target. Given that perilla and sage have been suggested as treatment options for various diseases, our dataset may constitute a valuable resource also for future research beyond virology.
  • Item
    Autophagy-related deubiquitinating enzymes involved in health and disease
    (Basel : MDPI, 2015) El Magraoui, Fouzi; Reidick, Christina; Meyer, Hemut E.; Platta, Harald W.
    Autophagy is an evolutionarily-conserved process that delivers diverse cytoplasmic components to the lysosomal compartment for either recycling or degradation. This involves the removal of protein aggregates, the turnover of organelles, as well as the elimination of intracellular pathogens. In this situation, when only specific cargoes should be targeted to the lysosome, the potential targets can be selectively marked by the attachment of ubiquitin in order to be recognized by autophagy-receptors. Ubiquitination plays a central role in this process, because it regulates early signaling events during the induction of autophagy and is also used as a degradation-tag on the potential autophagic cargo protein. Here, we review how the ubiquitin-dependent steps of autophagy are balanced or counteracted by deubiquitination events. Moreover, we highlight the functional role of the corresponding deubiquitinating enzymes and discuss how they might be involved in the occurrence of cancer, neurodegenerative diseases or infection with pathogenic bacteria.