Search Results

Now showing 1 - 2 of 2
  • Item
    Pseudo-chemotaxis of active Brownian particles competing for food
    (San Francisco, California, US : PLOS, 2020) Merlitz, Holger; Vuijk, Hidde D.; Wittmann, René; Sharma, Abhinav; Sommer, Jens-Uwe
    Active Brownian particles (ABPs) are physical models for motility in simple life forms and easily studied in simulations. An open question is to what extent an increase of activity by a gradient of fuel, or food in living systems, results in an evolutionary advantage of actively moving systems such as ABPs over non-motile systems, which rely on thermal diffusion only. It is an established fact that within confined systems in a stationary state, the activity of ABPs generates density profiles that are enhanced in regions of low activity, which is thus referred to as ‘anti-chemotaxis’. This would suggest that a rather complex sensoric subsystem and information processing is a precondition to recognize and navigate towards a food source. We demonstrate in this work that in non-stationary setups, for instance as a result of short bursts of fuel/food, ABPs do in fact exhibit chemotactic behavior. In direct competition with inactive, but otherwise identical Brownian particles (BPs), the ABPs are shown to fetch a larger amount of food. We discuss this result based on simple physical arguments. From the biological perspective, the ability of primitive entities to move in direct response to the available amount of external energy would, even in absence of any sensoric devices, encompass an evolutionary advantage.
  • Item
    Simultaneous statistical inference for epigenetic data
    (San Francisco, California, US : PLOS, 2015) Schildknecht, Konstantin; Olek, Sven; Dickhaus, Thorsten
    Epigenetic research leads to complex data structures. Since parametric model assumptions for the distribution of epigenetic data are hard to verify we introduce in the present work a nonparametric statistical framework for two-group comparisons. Furthermore, epigenetic analyses are often performed at various genetic loci simultaneously. Hence, in order to be able to draw valid conclusions for specific loci, an appropriate multiple testing correction is necessary. Finally, with technologies available for the simultaneous assessment of many interrelated biological parameters (such as gene arrays), statistical approaches also need to deal with a possibly unknown dependency structure in the data. Our statistical approach to the nonparametric comparison of two samples with independent multivariate observables is based on recently developed multivariate multiple permutation tests. We adapt their theory in order to cope with families of hypotheses regarding relative effects. Our results indicate that the multivariate multiple permutation test keeps the pre-assigned type I error level for the global null hypothesis. In combination with the closure principle, the family-wise error rate for the simultaneous test of the corresponding locus/parameter-specific null hypotheses can be controlled. In applications we demonstrate that group differences in epigenetic data can be detected reliably with our methodology.