Search Results

Now showing 1 - 3 of 3
  • Item
    Graphene oxide functional nanohybrids with magnetic nanoparticles for improved vectorization of doxorubicin to neuroblastoma cells
    (Basel : MDPI AG, 2019) Lerra, L.; Farfalla, A.; Sanz, B.; Cirillo, G.; Vittorio, O.; Voli, F.; Grand, M.L.; Curcio, M.; Nicoletta, F.P.; Dubrovska, A.; Hampel, S.; Iemma, F.; Goya, G.F.
    With the aim to obtain a site-specific doxorubicin (DOX) delivery in neuroblastoma SH-SY5Y cells, we designed an hybrid nanocarrier combining graphene oxide (GO) and magnetic iron oxide nanoparticles (MNPs), acting as core elements, and a curcumin–human serum albumin conjugate as functional coating. The nanohybrid, synthesized by redox reaction between the MNPs@GO system and albumin bioconjugate, consisted of MNPs@GO nanosheets homogeneously coated by the bioconjugate as verified by SEM investigations. Drug release experiments showed a pH-responsive behavior with higher release amounts in acidic (45% at pH 5.0) vs. neutral (28% at pH 7.4) environments. Cell internalization studies proved the presence of nanohybrid inside SH-SY5Y cytoplasm. The improved efficacy obtained in viability assays is given by the synergy of functional coating and MNPs constituting the nanohybrids: while curcumin moieties were able to keep low DOX cytotoxicity levels (at concentrations of 0.44–0.88 µM), the presence of MNPs allowed remote actuation on the nanohybrid by a magnetic field, increasing the dose delivered at the target site.
  • Item
    Sugar Modification Enhances Cytotoxic Activity of PAMAM-Doxorubicin Conjugate in Glucose-Deprived MCF-7 Cells – Possible Role of GLUT1 Transporter
    (Dordrecht [u.a.] : Springer Science + Business Media B.V, 2019) Sztandera, Krzysztof; Działak, Paula; Marcinkowska, Monika; Stańczyk, Maciej; Gorzkiewicz, Michał; Janaszewska, Anna; Klajnert-Maculewicz, Barbara
    Purpose: In order to overcome the obstacles and side effects of classical chemotherapy, numerous studies have been performed to develop the treatment based on targeted transport of active compounds directly to the site of action. Since tumor cells are featured with intensified glucose metabolism, we set out to develop innovative, glucose-modified PAMAM dendrimer for the delivery of doxorubicin to breast cancer cells. Methods: PAMAM-dox-glc conjugate was synthesized and characterized by 1H NMR, FT-IR, size and zeta potential measurements. The drug release rate from conjugate was evaluated by dialysis under different pH conditions. The expression level of GLUT family receptors in cells cultured in full and glucose-deprived medium was evaluated by quantitative real-time RT-PCR and flow cytometry. The cytotoxicity of conjugate in presence or absence of GLUT1 inhibitors was determined by MTT assay. Results: We showed that PAMAM-dox-glc conjugate exhibits pH-dependent drug release and increased cytotoxic activity compared to free drug in cells cultured in medium without glucose. Further, we proved that these cells overexpress transporters of GLUT family. The toxic effect of conjugate was eliminated by the application of specific GLUT1 inhibitors. Conclusion: Our findings revealed that the glucose moiety plays a crucial role in the recognition of cells with high expression of GLUT receptors. By selectively blocking GLUT1 transporter we showed its importance for the cytotoxic activity of PAMAM-dox-glc conjugate. These results suggest that PAMAM-glucose formulations may constitute an efficient platform for the specific delivery of anticancer drugs to tumor cells overexpressing transporters of GLUT family. © 2019, The Author(s).
  • Item
    Silk nanoparticles: proof of lysosomotropic anticancer drug delivery at single-cell resolution
    (Abingdon : Taylor & Francis Group, 2017) Totten, John D.; Wongpinyochit, Thidarat; Seib, F. Philipp
    Silk nanoparticles are expected to improve chemotherapeutic drug targeting to solid tumours by exploiting tumour pathophysiology, modifying the cellular pharmacokinetics of the payload and ultimately resulting in trafficking to lysosomes and triggering drug release. However, experimental proof for lysosomotropic drug delivery by silk nanoparticles in live cells is lacking and the importance of lysosomal pH and enzymes controlling drug release is currently unknown. Here, we demonstrate, in live single human breast cancer cells, the role of the lysosomal environment in determining silk nanoparticle-mediated drug release. MCF-7 human breast cancer cells endocytosed and trafficked drug-loaded native and PEGylated silk nanoparticles (∼100 nm in diameter) to lysosomes, with subsequent drug release from the respective carriers and nuclear translocation within 5 h of dosing. A combination of low pH and enzymatic degradation facilitated drug release from the silk nanoparticles; perturbation of the acidic lysosomal pH and inhibition of serine, cysteine and threonine proteases resulted in a 42% ± 2.2% and 33% ± 3% reduction in nuclear-associated drug accumulation for native and PEGylated silk nanoparticles, respectively. Overall, this study demonstrates the importance of lysosomal activity for anticancer drug release from silk nanoparticles, thereby providing direct evidence for lysosomotropic drug delivery in live cells.