Search Results

Now showing 1 - 10 of 23
  • Item
    Guiding cell adhesion and motility by modulating cross-linking and topographic properties of microgel arrays
    (San Francisco, California, US : PLOS, 2021) Riegert, Janine; Töpel, Alexander; Schieren, Jana; Coryn, Renee; Dibenedetto, Stella; Braunmiller, Dominik; Zajt, Kamil; Schalla, Carmen; Rütten, Stephan; Zenke, Martin; Pich, Andrij; Sechi, Antonio; Blank, Kerstin G.
    Biomaterial-driven modulation of cell adhesion and migration is a challenging aspect of tissue engineering. Here, we investigated the impact of surface-bound microgel arrays with variable geometry and adjustable cross-linking properties on cell adhesion and migration. We show that cell migration is inversely correlated with microgel array spacing, whereas directionality increases as array spacing increases. Focal adhesion dynamics is also modulated by microgel topography resulting in less dynamic focal adhesions on surface-bound microgels. Microgels also modulate the motility and adhesion of Sertoli cells used as a model for cell migration and adhesion. Both focal adhesion dynamics and speed are reduced on microgels. Interestingly, Gas2L1, a component of the cytoskeleton that mediates the interaction between microtubules and microfilaments, is dispensable for the regulation of cell adhesion and migration on microgels. Finally, increasing microgel cross-linking causes a clear reduction of focal adhesion turnover in Sertoli cells. These findings not only show that spacing and rigidity of surface-grafted microgels arrays can be effectively used to modulate cell adhesion and motility of diverse cellular systems, but they also form the basis for future developments in the fields of medicine and tissue engineering.
  • Item
    Towards a Biohybrid Lung: Endothelial Cells Promote Oxygen Transfer through Gas Permeable Membranes
    (New York, NY [u.a.] : Hindawi Publ. Corp., 2017) Menzel, Sarah; Finocchiaro, Nicole; Donay, Christine; Thiebes, Anja Lena; Hesselmann, Felix; Arens, Jutta; Djeljadini, Suzana; Wessling, Matthias; Schmitz-Rode, Thomas; Jockenhoevel, Stefan; Cornelissen, Christian Gabriel
    In patients with respiratory failure, extracorporeal lung support can ensure the vital gas exchange via gas permeable membranes but its application is restricted by limited long-term stability and hemocompatibility of the gas permeable membranes, which are in contact with the blood. Endothelial cells lining these membranes promise physiological hemocompatibility and should enable prolonged application. However, the endothelial cells increase the diffusion barrier of the blood-gas interface and thus affect gas transfer. In this study, we evaluated how the endothelial cells affect the gas exchange to optimize performance while maintaining an integral cell layer. Human umbilical vein endothelial cells were seeded on gas permeable cell culture membranes and cultivated in a custom-made bioreactor. Oxygen transfer rates of blank and endothelialized membranes in endothelial culture medium were determined. Cell morphology was assessed by microscopy and immunohistochemistry. Both setups provided oxygenation of the test fluid featuring small standard deviations of the measurements. Throughout the measuring range, the endothelial cells seem to promote gas transfer to a certain extent exceeding the blank membranes gas transfer performance by up to 120%. Although the underlying principles hereof still need to be clarified, the results represent a significant step towards the development of a biohybrid lung.
  • Item
    Targeting microplastic particles in the void of diluted suspensions
    (Amsterdam [u.a.] : Elsevier Science, 2019) Islam, Shohana; Apitius, Lina; Jakob, Felix; Schwaneberg, Ulrich
    Accumulation of microplastic in the environment and food chain will be a grand challenge for our society. Polyurethanes are widely used synthetic polymers in medical (e.g. catheters) and industrial products (especially as foams). Polyurethane is not abundant in nature and only a few microbial strains (fungi and bacteria) and enzymes (polyurethaneases and cutinases) have been reported to efficiently degrade polyurethane. Notably, in nature a long period of time (from 50 to >100 years depending on the literature) is required for degradation of plastics. Material binding peptides (e.g. anchor peptides) bind strongly to polymers such as polypropylene, polyethylene terephthalate, and polyurethane and can target specifically polymers. In this study we report the fusion of the anchor peptide Tachystatin A2 to the bacterial cutinase Tcur1278 which accelerated the degradation of polyester-polyurethane nanoparticles by a factor of 6.6 in comparison to wild-type Tcur1278. Additionally, degradation half-lives of polyester-polyurethane nanoparticles were reduced from 41.8 h to 6.2 h (6.7-fold) in a diluted polyester-polyurethane suspension (0.04% w/v).
  • Item
    Digitally Fabricated and Naturally Augmented In Vitro Tissues
    (Weinheim : Wiley-VCH, 2020) Duarte Campos, Daniela F.; De Laporte, Laura
    Human in vitro tissues are extracorporeal 3D cultures of human cells embedded in biomaterials, commonly hydrogels, which recapitulate the heterogeneous, multiscale, and architectural environment of the human body. Contemporary strategies used in 3D tissue and organ engineering integrate the use of automated digital manufacturing methods, such as 3D printing, bioprinting, and biofabrication. Human tissues and organs, and their intra- and interphysiological interplay, are particularly intricate. For this reason, attentiveness is rising to intersect materials science, medicine, and biology with arts and informatics. This report presents advances in computational modeling of bioink polymerization and its compatibility with bioprinting, the use of digital design and fabrication in the development of fluidic culture devices, and the employment of generative algorithms for modeling the natural and biological augmentation of in vitro tissues. As a future direction, the use of serially linked in vitro tissues as human body-mimicking systems and their application in drug pharmacokinetics and metabolism, disease modeling, and diagnostics are discussed. © 2020 The Authors. Advanced Healthcare Materials published by Wiley-VCH GmbH
  • Item
    A New Approach to Harness Probiotics Against Common Bacterial Skin Pathogens: Towards Living Antimicrobials
    (New York, NY [u.a.] : Springer, 2021) Khalfallah, Ghazi; Gartzen, Rita; Möller, Martin; Heine, Elisabeth; Lütticken, Rudolf
    In this study, the potential of certain lactic acid bacteria—classified as probiotics and known to be antimicrobially active against pathogens or food-poisoning microorganisms—was evaluated with respect to their activity against bacterial skin pathogens. The aim of the study was to develop a plaster/bandage for the application of inhibitory substances produced by these probiotics when applied to diseased skin. For this purpose, two Streptococcus salivarius strains and one Lactobacillus plantarum were tested for production of antimicrobials (bacteriocin-like substances) active against Gram-positive and Gram-negative pathogens using established methods. A newly designed membrane test ensured that the probiotics produce antimicrobials diffusible through membranes. Target organisms used were Cutibacterium acnes, Staphylococcus aureus, and Pseudomonas aeruginosa. Moreover, the L. plantarum 8P-A3 strain was tested against additional bacteria involved in skin disorders. The Lactobacillales used were active against all potential skin pathogens tested. These probiotics could be enclosed between polymer membranes—one tight, the other permeable for their products, preserved by vacuum drying, and reactivated after at least three months storage. Importantly, the reactivated pads containing the probiotics demonstrated antibacterial activity on agar plates against all pathogens tested. This suggests that the probiotic containing pads may be topically applied for the treatment of skin disorders without the need for a regular antibiotic treatment or as an adjunctive therapy.
  • Item
    How Much Physical Guidance is Needed to Orient Growing Axons in 3D Hydrogels?
    (Weinheim : Wiley-VCH, 2020) Rose, Jonas C.; Gehlen, David B.; Omidinia-Anarkoli, Abdolrahman; Fölster, Maaike; Haraszti, Tamás; Jaekel, Esther E.; De Laporte, Laura
    Directing cells is essential to organize multi-cellular organisms that are built up from subunits executing specific tasks. This guidance requires a precisely controlled symphony of biochemical, mechanical, and structural signals. While many guiding mechanisms focus on 2D structural patterns or 3D biochemical gradients, injectable material platforms that elucidate how cellular processes are triggered by defined 3D physical guiding cues are still lacking but crucial for the repair of soft tissues. Herein, a recently developed anisotropic injectable hybrid hydrogel (Anisogel) contains rod-shaped microgels that orient in situ by a magnetic field and has propelled studying 3D cell guidance. Here, the Anisogel is used to investigate the dependence of axonal guidance on microgel dimensions, aspect ratio, and distance. While large microgels result in high material anisotropy, they significantly reduce neurite outgrowth and thus the guidance efficiency. Narrow and long microgels enable strong axonal guidance with maximal outgrowth including cell sensing over distances of tens of micrometers in 3D. Moreover, nerve cells decide to orient inside the Anisogel within the first three days, followed by strengthening of the alignment, which goes along with oriented fibronectin deposition. These findings demonstrate the potential of the Anisogel to tune structural and mechanical parameters for specific applications. © 2020 The Authors. Published by Wiley-VCH GmbH
  • Item
    Shelf-Life Evaluation and Lyophilization of PBCA-Based Polymeric Microbubbles
    (Basel : MDPI, 2019) Ojha, Tarun; Pathak, Vertika; Drude, Natascha; Weiler, Marek; Rommel, Dirk; Rütten, Stephan; Geinitz, Bertram; van Steenbergen, Mies J.; Storm, Gert; Kiessling, Fabian; Lammers, Twan
    Poly(n-butyl cyanoacrylate) microbubbles (PBCA-MB) are extensively employed for functional and molecular ultrasound (US) imaging, as well as for US-mediated drug delivery. To facilitate the use of PBCA-MB as a commercial platform for biomedical applications, it is important to systematically study and improve their stability and shelf-life. In this context, lyophilization (freeze drying) is widely used to increase shelf-life and promote product development. Here, we set out to analyze the stability of standard and rhodamine-B loaded PBCA-MB at three different temperatures (4 °C, 25 °C, and 37 °C), for a period of time of up to 20 weeks. In addition, using sucrose, glucose, polyvinylpyrrolidone (PVP), and polyethylene glycol (PEG) as cryoprotectants, we investigated if PBCA-MB can be lyophilized without affecting their size, concentration, US signal generation properties, and dye retention. Stability assessment showed that PBCA-MB remain largely intact for three and four weeks at 4 °C and 25 °C, respectively, while they disintegrate within one to two weeks at 37 °C, thereby compromising their acoustic properties. Lyophilization analyses demonstrated that PBCA-MB can be efficiently freeze-dried with 5% sucrose and 5% PVP, without changing their size, concentration, and US signal generation properties. Experiments involving rhodamine-B loaded MB indicated that significant dye leakage from the polymeric shell takes place within two to four weeks in case of non-lyophilized PBCA-MB. Lyophilization of rhodamine-loaded PBCA-MB with sucrose and PVP showed that the presence of the dye does not affect the efficiency of freeze-drying, and that the dye is efficiently retained upon MB lyophilization. These findings contribute to the development of PBCA-MB as pharmaceutical products for preclinical and clinical applications.
  • Item
    Decreased Effective Macromolecular Crowding in Escherichia coli Adapted to Hyperosmotic Stress
    (Washington, DC : Soc., 2019) Liu, Boqun; Hasrat, Zarief; Poolman, Bert; Boersma, Arnold J.; Mullineaux, Conrad W.
    Escherichia coli adapts to changing environmental osmolality to survive and maintain growth. It has been shown that the diffusion of green fluorescent protein (GFP) in cells adapted to osmotic upshifts is higher than expected from the increase in biopolymer volume fraction. To better understand the physicochemical state of the cytoplasm in adapted cells, we now follow the macromolecular crowding during adaptation with fluorescence resonance energy transfer (FRET)-based sensors. We apply an osmotic upshift and find that after an initial increase, the apparent crowding decreases over the course of hours to arrive at a value lower than that before the osmotic upshift. Crowding relates to cell volume until cell division ensues, after which a transition in the biochemical organization occurs. Analysis of single cells by microfluidics shows that changes in cell volume, elongation, and division are most likely not the cause for the transition in organization. We further show that the decrease in apparent crowding upon adaptation is similar to the apparent crowding in energy-depleted cells. Based on our findings in combination with literature data, we suggest that adapted cells have indeed an altered biochemical organization of the cytoplasm, possibly due to different effective particle size distributions and concomitant nanoscale heterogeneity. This could potentially be a general response to accommodate higher biopolymer fractions yet retaining crowding homeostasis, and it could apply to other species or conditions as well.IMPORTANCE Bacteria adapt to ever-changing environmental conditions such as osmotic stress and energy limitation. It is not well understood how biomolecules reorganize themselves inside Escherichia coli under these conditions. An altered biochemical organization would affect macromolecular crowding, which could influence reaction rates and diffusion of macromolecules. In cells adapted to osmotic upshift, protein diffusion is indeed faster than expected on the basis of the biopolymer volume fraction. We now probe the effects of macromolecular crowding in cells adapted to osmotic stress or depleted in metabolic energy with a genetically encoded fluorescence-based probe. We find that the effective macromolecular crowding in adapted and energy-depleted cells is lower than in unstressed cells, indicating major alterations in the biochemical organization of the cytoplasm.
  • Item
    Cellulose Nanofibril Hydrogel Promotes Hepatic Differentiation of Human Liver Organoids
    (Weinheim : Wiley-VCH, 2020) Krüger, Melanie; Oosterhoff, Loes A.; van Wolferen, Monique E.; Schiele, Simon A.; Walther, Andreas; Geijsen, Niels; De Laporte, Laura; van der Laan, Luc J.W.; Kock, Linda M.; Spee, Bart
    To replicate functional liver tissue in vitro for drug testing or transplantation, 3D tissue engineering requires representative cell models as well as scaffolds that not only promote tissue production but also are applicable in a clinical setting. Recently, adult liver-derived liver organoids are found to be of much interest due to their genetic stability, expansion potential, and ability to differentiate toward a hepatocyte-like fate. The current standard for culturing these organoids is a basement membrane hydrogel like Matrigel (MG), which is derived from murine tumor material and apart from its variability and high costs, possesses an undefined composition and is therefore not clinically applicable. Here, a cellulose nanofibril (CNF) hydrogel is investigated with regard to its potential to serve as an alternative clinical grade scaffold to differentiate liver organoids. The results show that its mechanical properties are suitable for differentiation with overall, either equal or improved, functionality of the hepatocyte-like cells compared to MG. Therefore, and because of its defined and tunable chemical definition, the CNF hydrogel presents a viable alternative to MG for liver tissue engineering with the option for clinical use. © 2020 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
  • Item
    Efficacy of A Poly(MeOEGMA) Brush on the Prevention of Escherichia coli Biofilm Formation and Susceptibility
    (Basel : MDPI, 2020) Alves, Patrícia; Gomes, Luciana Calheiros; Rodríguez-Emmenegger, Cesar; Mergulhão, Filipe José
    Urinary tract infections are one of the most common hospital-acquired infections, and they are often associated with biofilm formation in indwelling medical devices such as catheters and stents. This study aims to investigate the antibiofilm performance of a polymer brush—poly[oligo(ethylene glycol) methyl ether methacrylate], poly(MeOEGMA)—and evaluate its effect on the antimicrobial susceptibility of Escherichia coli biofilms formed on that surface. Biofilms were formed in a parallel plate flow chamber (PPFC) for 24 h under the hydrodynamic conditions prevailing in urinary catheters and stents and challenged with ampicillin. Results obtained with the brush were compared to those obtained with two control surfaces, polydimethylsiloxane (PDMS) and glass. The polymer brush reduced by 57% the surface area covered by E. coli after 24 h, as well as the number of total adhered cells. The antibiotic treatment potentiated cell death and removal, and the total cell number was reduced by 88%. Biofilms adapted their architecture, and cell morphology changed to a more elongated form during that period. This work suggests that the poly(MeOEGMA) brush has potential to prevent bacterial adhesion in urinary tract devices like ureteral stents and catheters, as well as in eradicating biofilms developed in these biomedical devices. © 2020 by the authors. Licensee MDPI, Basel, Switzerland.