Search Results

Now showing 1 - 3 of 3
  • Item
    A Design Strategy for Mushroom-Shaped Microfibrils With Optimized Dry Adhesion: Experiments and Finite Element Analyses
    (New York, NY : ASME, 2021) Zhang, Xuan; Wang, Yue; Hensel, René; Arzt, Eduard
    Enhanced dry adhesion of micropatterned polymeric surfaces has been frequently demonstrated. Among the design parameters, the cap geometry plays an important role to improve their performance. In this study, we combined experiments on single polyurethane mushroom-shaped fibrils (with a stalk diameter of 80 µm and height of 125 µm) against flat glass, with numerical simulations implementing a cohesive zone. We found that the geometry of the mushroom cap strongly affects the interfacial crack behavior and the pull-off stress. The experimental and numerical results suggest that optimal adhesion was accompanied by the appearance of both edge and interior interfacial cracks during separation. Finite elemental analyses revealed the evolution of the interfacial stress distributions as a function of the cap thickness and confirmed the distinct detachment mechanisms. Furthermore, the effect of the stalk diameter and the Young's modulus on the adhesive force was established, resulting in an optimal design for mushroom-shaped fibrils.
  • Item
    Effect of Subsurface Microstructures on Adhesion of Highly Confined Elastic Films
    (New York, NY : ASME, 2021) Samri, Manar; Kossa, Attila; Hensel, René
    Polymer adhesive films sandwiched between two rigid solids are a common bonding strategy. The mechanics and consequently the adhesion of such geometrically confined films depend mainly on their thickness, Young's modulus, and the Poisson's ratio of the material. In this work, we explore the effect of a micropatterned subsurface embedded into the adhesive layer. We compare experiments with three-dimensional numerical simulations to evaluate the impact of the microstructure on the contact stiffness and effective modulus. The results are used to extend a previously proposed size scaling argument on adhesion from incompressible to slightly compressible films to account for the silicone used in our study with a Poisson's ratio of 0.495. In addition, interfacial stress distributions between the elastic film and the glass disc are obtained from plane strain simulations to evaluate characteristic adhesion failures such as edge cracks and cavitation. Overall, the micropatterned subsurface has a large impact on the contact stiffness, the interfacial stress distribution, and the detachment behavior; however, the adhesion performance is only slightly improved in comparison to a non-patterned subsurface.
  • Item
    Mechanochemical Ionization: Differentiating Pressure-, Shear-, and Temperature-Induced Reactions in a Model Phosphate
    (Cham : Springer International Publishing, 2022) Sukhomlinov, Sergey V.; Kickelbick, Guido; Müser, Martin H.
    Using density-functional theory-based molecular dynamics simulations, we study stress and temperature-induced chemical reactions in bulk systems containing triphosphoric acid and zinc phosphate molecules. The nature of the products depends sensitively on the imposed conditions, e.g., isotropic and even more so shear stress create (zwitter-) ionic products. Free ions also emerge from thermal cycles, but the reactions are endothermic rather than exothermic as for stress-induced transitions and zinc atoms remain four-coordinated. Hydrostatic stresses required for reactions to occur lie well below those typical for tribological micro-contacts of stiff solids and are further reduced by shear. Before zinc atoms change their coordination under stress, proton mobility increases, i.e., hydrogen atoms start to change the oxygen atom they are bonded to within 10 ps time scales. The hydrostatic stress for this to occur is reduced with increasing shear. Our finding suggests that materials for which number, nature, and mobility of ions are stress sensitive cannot have a well-defined position in the triboelectric series, since local contact stresses generally depend on the stiffness of the counter body. Moreover, our simulations do not support the idea that chemical reactions in a tribo-contact are commonly those that would be obtained through heating alone.