Search Results

Now showing 1 - 10 of 16
  • Item
    Environmental Effects over the First 2½ Rotation Periods of a Fertilised Poplar Short Rotation Coppice
    (New York, NY : Springer, 2017-12-7) Kern, Jürgen; Germer, Sonja; Ammon, Christian; Balasus, Antje; Bischoff, Wolf-Anno; Schwarz, Andreas; Forstreuter, Manfred; Kaupenjohann, Martin
    A short rotation coppice (SRC) with poplar was established in a randomised fertilisation experiment on sandy loam soil in Potsdam (Northeast Germany). The main objective of this study was to assess if negative environmental effects as nitrogen leaching and greenhouse gas emissions are enhanced by mineral nitrogen (N) fertiliser applied to poplar at rates of 0, 50 and 75 kg N ha−1 year−1 and how these effects are influenced by tree age with increasing number of rotation periods and cycles of organic matter decomposition and tree growth after each harvesting event. Between 2008 and 2012, the leaching of nitrate (NO3 −) was monitored with self-integrating accumulators over 6-month periods and the emissions of the greenhouse gases (GHG) nitrous oxide (N2O) and carbon dioxide (CO2) were determined in closed gas chambers. During the first 4 years of the poplar SRC, most nitrogen was lost through NO3 − leaching from the main root zone; however, there was no significant relationship to the rate of N fertilisation. On average, 5.8 kg N ha−1 year−1 (13.0 kg CO2equ) was leached from the root zone. Nitrogen leaching rates decreased in the course of the 4-year study parallel to an increase of the fine root biomass and the degree of mycorrhization. In contrast to N leaching, the loss of nitrogen by N2O emissions from the soil was very low with an average of 0.61 kg N ha−1 year−1 (182 kg CO2equ) and were also not affected by N fertilisation over the whole study period. Real CO2 emissions from the poplar soil were two orders of magnitude higher ranging between 15,122 and 19,091 kg CO2 ha−1 year−1 and followed the rotation period with enhanced emission rates in the years of harvest. As key-factors for NO3 − leaching and N2O emissions, the time after planting and after harvest and the rotation period have been identified by a mixed effects model. © 2017, The Author(s).
  • Item
    Comprehensive Assessment of the Dynamics of Banana Chilling Injury by Advanced Optical Techniques
    (Basel : MDPI, 2021) Herppich, Werner B.; Zsom, Tamás
    Green‐ripe banana fruit are sensitive to chilling injury (CI) and, thus, prone to postharvest quality losses. Early detection of CI facilitates quality maintenance and extends shelf life. CI affects all metabolic levels, with membranes and, consequently, photosynthesis being primary targets. Optical techniques such as chlorophyll a fluorescence analysis (CFA) and spectroscopy are promising tools to evaluate CI effects in photosynthetically active produce. Results obtained on bananas are, however, largely equivocal. This results from the lack of a rigorous evaluation of chilling impacts on the various aspects of photosynthesis. Continuous and modulated CFA and imaging (CFI), and VIS remission spectroscopy (VRS) were concomitantly applied to noninvasively and comprehensively monitor photosynthetically relevant effects of low temperatures (5 °C, 10 °C, 11.5 °C and 13 °C). Detailed analyses of chilling‐related variations in photosynthetic activity and photoprotection, and in contents of relevant pigments in green‐ripe bananas, helped to better understand the physiological changes occurring during CI, highlighting that distinct CFA and VRS parameters comprehensively reflect various effects of chilling on fruit photosynthesis. They revealed why not all CFA parameters can be applied meaningfully for early detection of chilling effects. This study provides relevant requisites for improving CI monitoring and prediction.
  • Item
    Artificial Intelligence for the Prediction of the Thermal Performance of Evaporative Cooling Systems
    (Basel : MDPI, 2021) Asfahan, Hafiz M.; Sajjad, Uzair; Sultan, Muhammad; Hussain, Imtiyaz; Hamid, Khalid; Ali, Mubasher; Wang, Chi-Chuan; Shamshiri, Redmond R.; Khan, Muhammad Usman
    The present study reports the development of a deep learning artificial intelligence (AI) model for predicting the thermal performance of evaporative cooling systems, which are widely used for thermal comfort in different applications. The existing, conventional methods for the analysis of evaporation-assisted cooling systems rely on experimental, mathematical, and empirical approaches in order to determine their thermal performance, which limits their applications in diverse and ambient spatiotemporal conditions. The objective of this research was to predict the thermal performance of three evaporation-assisted air-conditioning systems—direct, indirect, and Maisotsenko evaporative cooling systems—by using an AI approach. For this purpose, a deep learning algorithm was developed and lumped hyperparameters were initially chosen. A correlation analysis was performed prior to the development of the AI model in order to identify the input features that could be the most influential for the prediction efficiency. The deep learning algorithm was then optimized to increase the learning rate and predictive accuracy with respect to experimental data by tuning the hyperparameters, such as by manipulating the activation functions, the number of hidden layers, and the neurons in each layer by incorporating optimizers, including Adam and RMsprop. The results confirmed the applicability of the method with an overall value of R2 = 0.987 between the input data and ground-truth data, showing that the most competent model could predict the designated output features (Tdbout, wout, and Eairout). The suggested method is straightforward and was found to be practical in the evaluation of the thermal performance of deployed air conditioning systems under different conditions. The results supported the hypothesis that the proposed deep learning AI algorithm has the potential to explore the feasibility of the three evaporative cooling systems in dynamic ambient conditions for various agricultural and livestock applications.
  • Item
    Effect of Liquid Hot Water Pretreatment on Hydrolysates Composition and Methane Yield of Rice Processing Residue
    (Basel : MDPI, 2021) López González, Lisbet Mailin; Heiermann, Monika
    Lignocellulosic rice processing residue was pretreated in liquid hot water (LHW) at three different temperatures (140, 160, and 180 °C) and two pretreatment times (10 and 20 min) in order to assess its effects on hydrolysates composition, matrix structural changes and methane yield. The concentrations of acetic acid, 5-hydroxymethylfurfural and furfural increased with pretreatment severity (log Ro). The maximum methane yield (276 L kg−1 VS) was achieved under pretreatment conditions of 180 °C for 20 min, with a 63% increase compared to untreated biomass. Structural changes resulted in a slight removal of silica on the upper portion of rice husks, visible predominantly at maximum severity. However, the outer epidermis was kept well organized. The results indicate, at severities 2.48 ≤ log Ro ≤ 3.66, a significant potential for the use of LHW to improve methane production from rice processing residue.
  • Item
    A Review of Biomass Briquette Binders and Quality Parameters
    (Basel : MDPI, 2022) Obi, Okey Francis; Pecenka, Ralf; Clifford, Michael J.
    The adverse effect of the use of fossil fuels on the environment and public health has given rise to a sustained renewable energy research and development. An important component of global renewable energy mix is the use of loose biomass, including agricultural and forestry residues, to produce solid fuels in the form of briquettes. Briquettes play a significant role in bioenergy mix in developing and developed countries. The production of biomass briquettes often entails the collection, transportation, storage, processing, and compaction of loose biomass that meet specific quality parameters. The densification process often involves the addition of binders to improve the cohesive strength of the briquette material. This paper surveys recent literature from 2012 to 2021 to establish the current state of research on the use of binders in briquette production; and reviews current parameters used in assessing the quality of biomass briquettes with focus on mechanical and handling properties. While a number of quality parameters were identified, their assessment methodologies varied widely in the literature, thus necessitating standardization for comparability purposes. The review also includes factors affecting the wide production and adoption of biomass briquettes in most developing economies and proposes ways of overcoming the bottlenecks.
  • Item
    Process disturbances in agricultural biogas production—causes, mechanisms and effects on the biogas microbiome: A review
    (Basel : MDPI AG, 2019) Theuerl, S.; Klang, J.; Prochnow, A.
    Disturbances of the anaerobic digestion process reduce the economic and environmental performance of biogas systems. A better understanding of the highly complex process is of crucial importance in order to avoid disturbances. This review defines process disturbances as significant changes in the functionality within the microbial community leading to unacceptable and severe decreases in biogas production and requiring an active counteraction to be overcome. The main types of process disturbances in agricultural biogas production are classified as unfavorable process temperatures, fluctuations in the availability of macro- and micronutrients (feedstock variability), overload of the microbial degradation potential, process-related accumulation of inhibiting metabolites such as hydrogen (H 2 ), ammonium/ammonia (NH 4 + /NH 3 ) or hydrogen sulphide (H 2 S) and inhibition by other organic and inorganic toxicants. Causes, mechanisms and effects on the biogas microbiome are discussed. The need for a knowledge-based microbiome management to ensure a stable and efficient production of biogas with low susceptibility to disturbances is derived and an outlook on potential future process monitoring and control by means of microbial indicators is provided.
  • Item
    Investigation of the Effects of Torrefaction Temperature and Residence Time on the Fuel Quality of Corncobs in a Fixed-Bed Reactor
    (Basel : MDPI, 2022) Orisaleye, Joseph I.; Jekayinfa, Simeon O.; Pecenka, Ralf; Ogundare, Adebayo A.; Akinseloyin, Michael O.; Fadipe, Opeyemi L.
    Biomass from agriculture is a promising alternative fuel due to its carbon-neutral feature. However, raw biomass does not have properties required for its direct utilization for energy generation. Torrefaction is considered as a pretreatment method to improve the properties of biomass for energy applications. This study was aimed at investigating the effects of torrefaction temperature and residence time on some physical and chemical properties of torrefied corncobs. Therefore, a fixed-bed torrefaction reactor was developed and used in the torrefaction of corncobs. The torrefaction process parameters investigated were the torrefaction temperature (200, 240, and 280 °C) and the residence time (30, 60, and 90 min). The effects of these parameters on the mass loss, grindability, chemical composition, and calorific value of biomass were investigated. It was shown that the mass loss increased with increasing torrefaction temperature and residence time. The grinding throughput of the biomass was improved by increasing both the torrefaction temperature and the residence time. Torrefaction at higher temperatures and longer residence times had greater effects on the reduction in particle size of the milled corncobs. The calorific value was highest at a torrefaction temperature of 280 °C and a residence time of 90 min. The energy yield for all treatments ranged between 92.8 and 99.2%. The results obtained in this study could be useful in the operation and design of torrefaction reactors. They also provided insight into parameters to be investigated for optimization of the torrefaction reactor.
  • Item
    Comparative Studies on Water- and Vapor-Based Hydrothermal Carbonization: Process Analysis
    (Basel : MDPI, 2020) Ro, Kyoung S.; Libra, Judy A.; Alvarez-Murillo, Andrés
    Hydrothermal carbonization (HTC) reactor systems used to convert wet organic wastes into value-added hydrochar are generally classified in the literature as liquid water-based (HTC) or vapor-based (VTC). However, the distinction between the two is often ambiguous. In this paper, we present a methodological approach to analyze process conditions for hydrothermal systems. First, we theoretically developed models for predicting reactor pressure, volume fraction of liquid water and water distribution between phases as a function of temperature. The reactor pressure model predicted the measured pressure reasonably well. We also demonstrated the importance of predicting the condition at which the reactor system enters the subcooled compression liquid region to avoid the danger of explosion. To help understand water–feedstock interactions, we defined a new solid content parameter %S(T) based on the liquid water in physical contact with feedstock, which changes with temperature due to changes in the water distribution. Using these models, we then compared the process conditions of seven different HTC/VTC cases reported in the literature. This study illustrates that a large range of conditions need to be considered before applying the label VTC or HTC. These tools can help in designing experiments to compare systems and understand results in future HTC research
  • Item
    Process Analysis of Main Organic Compounds Dissolved in Aqueous Phase by Hydrothermal Processing of Açaí (Euterpe oleraceae, Mart.) Seeds: Influence of Process Temperature, Biomass-to-Water Ratio, and Production Scales
    (Basel : MDPI, 2021) da Silva, Conceição de Maria Sales; de Castro, Douglas Alberto Rocha; Santos, Marcelo Costa; Almeida, Hélio da Silva; Schultze, Maja; Lüder, Ulf; Hoffmann, Thomas; Machado, Nélio Teixeira
    This work aims to systematically investigate the influence of process temperature, biomass-to-water ratio, and production scales (laboratory and pilot) on the chemical composition of aqueous and gaseous phases and mass production of chemicals by hydrothermal processing of Açaí (Euterpe oleraceae, Mart.) seeds. The hydrothermal carbonization was carried out at 175, 200, 225, and 250 °C at 2 °C/min and a biomass-to-water ratio of 1:10; at 250 °C at 2 °C/min and biomass-to-water ratios of 1:10, 1:15, and 1:20 in technical scale; and at 200, 225, and 250 °C at 2 °C/min and a biomass-to-water ratio of 1:10 in laboratory scale. The elemental composition (C, H, N, S) in the solid phase was determined to compute the HHV. The chemical composition of the aqueous phase was determined by GC and HPLC and the volumetric composition of the gaseous phase using an infrared gas analyzer. For the experiments in the pilot test scale with a constant biomass-to-water ratio of 1:10, the yields of solid, liquid, and gaseous phases varied between 53.39 and 37.01% (wt.), 46.61 and 59.19% (wt.), and 0.00 and 3.80% (wt.), respectively. The yield of solids shows a smooth exponential decay with temperature, while that of liquid and gaseous phases showed a smooth growth. By varying the biomass-to-water ratios, the yields of solid, liquid, and gaseous reaction products varied between 53.39 and 32.09% (wt.), 46.61 and 67.28% (wt.), and 0.00 and 0.634% (wt.), respectively. The yield of solids decreased exponentially with increasing water-to-biomass ratio, and that of the liquid phase increased in a sigmoid fashion. For a constant biomass-to-water ratio, the concentrations of furfural and HMF decreased drastically with increasing temperature, reaching a minimum at 250 °C, while that of phenols increased. In addition, the concentrations of CH3COOH and total carboxylic acids increased, reaching a maximum concentration at 250 °C. For constant process temperature, the concentrations of aromatics varied smoothly with temperature. The concentrations of furfural, HMF, and catechol decreased with temperature, while that of phenols increased. The concentrations of CH3COOH and total carboxylic acids decreased exponentially with temperature. Finally, for the experiments with varying water-to-biomass ratios, the productions of chemicals (furfural, HMF, phenols, cathecol, and acetic acid) in the aqueous phase is highly dependent on the biomass-to-water ratio. For the experiments at the laboratory scale with a constant biomass-to-water ratio of 1:10, the yields of solids ranged between 55.9 and 51.1% (wt.), showing not only a linear decay with temperature but also a lower degradation grade. The chemical composition of main organic compounds (furfural, HMF, phenols, catechol, and acetic acid) dissolved in the aqueous phase in laboratory-scale study showed the same behavior as those obtained in the pilot-scale study.
  • Item
    The future agricultural biogas plant in Germany: A vision
    (Basel : MDPI AG, 2019) Theuerl, S.; Herrmann, C.; Heiermann, M.; Grundmann, P.; Landwehr, N.; Kreidenweis, U.; Prochnow, A.
    After nearly two decades of subsidized and energy crop-oriented development, agricultural biogas production in Germany is standing at a crossroads. Fundamental challenges need to be met. In this article we sketch a vision of a future agricultural biogas plant that is an integral part of the circular bioeconomy and works mainly on the base of residues. It is flexible with regard to feedstocks, digester operation, microbial communities and biogas output. It is modular in design and its operation is knowledge-based, information-driven and largely automated. It will be competitive with fossil energies and other renewable energies, profitable for farmers and plant operators and favorable for the national economy. In this paper we discuss the required contribution of research to achieve these aims.