Search Results

Now showing 1 - 10 of 56
  • Item
    Surface-coated polylactide fiber meshes as tissue engineering matrices with enhanced cell integration properties
    (Hindawi Publishing Corporation, 2014) Schnabelrauch, M.; Wyrwa, R.; Rebl, H.; Bergemann, C.; Finke, B.; Schlosser, M.; Walschus, U.; Lucke, S.; Weltmann, K.-D.; Nebe, J.B.
    Poly(L-lactide-co-D/L-lactide)-based fiber meshes resembling structural features of the native extracellular matrix have been prepared by electrospinning. Subsequent coating of the electrospun fibers with an ultrathin plasma-polymerized allylamine (PPAAm) layer after appropriate preactivation with continuous O2/Ar plasma changed the hydrophobic nature of the polylactide surface into a hydrophilic polymer network and provided positively charged amino groups on the fiber surface able to interact with negatively charged pericellular matrix components. In vitro cell experiments using different human cell types (epithelial origin: gingiva and uroepithelium; bone cells: osteoblasts) revealed that the PPAAm-activated surfaces promoted the occupancy of the meshes by cells accompanied by improved initial cell spreading. This nanolayer is stable in its cell adhesive characteristics also after γ-sterilization. An in vivo study in a rat intramuscular implantation model demonstrated that the local inflammatory tissue response did not differ between PPAAm-coated and untreated polylactide meshes.
  • Item
    Interaction of a free burning arc with regenerative protective layers
    (Bristol : Institute of Physics Publishing, 2014) Uhrlandt, D.; Gorchakov, S.; Brueser, V.; Franke, S.; Khakpour, A.; Lisnyak, M.; Methling, R.; Schoenemann, T.
    The possible use of protective layers made of ceramic powders for walls in thermal plasma applications is studied. A stable free burning arc of currents up to 5 kA between copper- tungsten electrodes is used to analyse the arc interaction with samples coated by mixtures of CaCO3, MgCO3, and Mg(OH)2 with plaster. By means of optical emission spectroscopy the maximum arc temperature and the radiation impact on the surfaces are estimated to be around 15000 K and 20 MWm-2, respectively. Thermographic measurements confirm the efficient protection of substrates by all layer materials. Layers containing CaCO3 lead to the lowest heating of ceramic samples which may be caused by a strong evaporation of the layer material.
  • Item
    Influence of the arc plasma parameters on the weld pool profile in TIG welding
    (Bristol : Institute of Physics Publishing, 2014) Toropchin, A.; Frolov, V.; Pipa, A.V.; Kozakov, R.; Uhrlandt, D.
    Magneto-hydrodynamic simulations of the arc and fluid simulations of the weld pool can be beneficial in the analysis and further development of arc welding processes and welding machines. However, the appropriate coupling of arc and weld pool simulations needs further improvement. The tungsten inert gas (TIG) welding process is investigated by simulations including the weld pool. Experiments with optical diagnostics are used for the validation. A coupled computational model of the arc and the weld pool is developed using the software ANSYS CFX. The weld pool model considers the forces acting on the motion of the melt inside and on the surface of the pool, such as Marangoni, drag, electromagnetic forces and buoyancy. The experimental work includes analysis of cross-sections of the workpieces, highspeed video images and spectroscopic measurements. Experiments and calculations have been performed for various currents, distances between electrode and workpiece and nozzle diameters. The studies show the significant impact of material properties like surface tension dependence on temperature as well as of the arc structure on the weld pool behaviour and finally the weld seam depth. The experimental weld pool profiles and plasma temperatures are in good agreement with computational results.
  • Item
    Ablation-dominated arcs in CO2 atmosphere—Part I: Temperature determination near current zero
    (Basel : MDPI, 2020) Methling, Ralf; Khakpour, Alireza; Götte, Nicolas; Uhrlandt, Dirk
    Wall-stabilized arcs dominated by nozzle–ablation are key elements of self-blast circuit breakers. In the present study, high-current arcs were investigated using a model circuit breaker (MCB) in CO2 as a gas alternative to SF6 (gas sulfur hexafluoride) and in addition a long polytetrafluoroethylene nozzle under ambient conditions for stronger ablation. The assets of different methods for optical investigation were demonstrated, e.g., high-speed imaging with channel filters and optical emission spectroscopy. Particularly the phase near current zero (CZ) crossing was studied in two steps. In the first step using high-speed cameras, radial temperature profiles have been determined until 0.4 ms before CZ in the nozzle. Broad temperature profiles with a maximum of 9400 K have been obtained from analysis of fluorine lines. In the second step, the spectroscopic sensitivity was increased using an intensified CCD camera, allowing single-shot measurements until few microseconds before CZ in the MCB. Ionic carbon and atomic oxygen emission were analyzed using absolute intensities and normal maximum. The arc was constricted and the maximum temperature decreased from > 18,000 K at 0.3 ms to about 11,000 K at 0.010 ms before CZ. The arc plasma needs about 0.5–1.0 ms after both the ignition phase and the current zero crossing to be completely dominated by the ablated wall material. © 2020 by the authors. Licensee MDPI, Basel, Switzerland.
  • Item
    Ablation-dominated arcs in CO2 atmosphere—Part II: Molecule emission and absorption
    (Basel : MDPI, 2020) Methling, Ralf; Götte, Nicolas; Uhrlandt, Dirk
    Molecule radiation can be used as a tool to study colder regions in switching arc plasmas like arc fringes in contact to walls and ranges around current zero (CZ). This is demonstrated in the present study for the first time for the case of ablation-dominated high-current arcs as key elements of self-blast circuit breakers. The arc in a model circuit breaker (MCB) in CO2 with and an arc in a long nozzle under ambient conditions with peak currents between 5 and 10 kA were studied by emission and absorption spectroscopy in the visible spectral range. The nozzle material was polytetrafluoroethylene (PTFE) in both cases. Imaging spectroscopy was carried out either with high-speed cameras or with intensified CCD cameras. A pulsed high-intensity Xe lamp was applied as a background radiator for the broad-band absorption spectroscopy. Emission of Swan bands from carbon dimers was observed at the edge of nozzles only or across the whole nozzle radius with highest intensity in the arc center, depending on current and nozzle geometry. Furthermore, absorption of C2 Swan bands and CuF bands were found with the arc plasma serving as background radiator. After CZ, only CuF was detected in absorption experiments. © 2020 by the authors. Licensee MDPI, Basel, Switzerland.
  • Item
    Electrical Modelling of Switching Arcs in a Low Voltage Relay at Low Currents
    (Basel : MDPI, 2020) Najam, Ammar; Pieterse, Petrus; Uhrlandt, Dirk
    The arc behaviour of short, low current switching arcs is not well understood and lacks a reliable model. In this work, the behaviour of an arc in the air is studied during contact separation at low DC currents (0.5 A to 20 A) and for small gap lengths (0 mm to 6 mm). The experiments are performed on a low voltage relay with two different electrode configurations. The arc voltage is measured during the opening of the contacts at constant current. The arc length is determined optically by tracing the mean path of the arc over time from a series of high-speed images. From the synchronised data of voltage vs. distance, first a sudden jump of the voltage at the start of contact opening is observed. Secondly, a sudden change in the voltage gradient occurs as the arc is elongated. Short arcs with a length up to approximately 1.25 mm show an intense radiation in the overall gap region and high voltage gradients. An unexpected behaviour never reported before was observed for longer arcs at low current: Two characteristic regions occur, a region in front of the cathode, with a length of approximately 1.25 mm, having an intense radiation and a high voltage gradient as well as a region of much lower radiation intensity and a comparatively lower voltage gradient in the remaining gap area despite a small anode spot region. The characteristic border of approximately 1.25 mm is almost independent of the current. A generalised arc voltage model is proposed based on the assumption that a constant sheath voltage and two discrete field regions exist, which are modelled as two independent linear functions of voltage vs. length. The data for various currents is combined to yield a general non-linear function for predicting the arc voltage vs. arc length and current.
  • Item
    Searching for order in atmospheric pressure plasma jets
    (Bristol : IOP Publ., 2017-11-10) Schäfer, Jan; Sigeneger, Florian; Šperka, Jiří; Rodenburg, Cornelia; Foest, Rüdiger
    The self-organized discharge behaviour occurring in a non-thermal radio-frequency plasma jet in rare gases at atmospheric pressure was investigated. The frequency of the azimuthal rotation of filaments in the active plasma volume and their inclination were measured along with the gas temperature under varying discharge conditions. The gas flow and heating were described theoretically by a three-dimensional hydrodynamic model. The rotation frequencies obtained by both methods qualitatively agree. The results demonstrate that the plasma filaments forming an inclination angle α with the axial gas velocity uz are forced to a transversal movement with the velocity uφ=tan(α)*uz, which is oriented in the inclination direction. Variations of ${u}_{\phi }$ in the model reveal that the observed dynamics minimizes the energy loss due to convective heat transfer by the gas flow. The control of the self-organization regime motivates the application of the plasma jet for precise and reproducible material processing.
  • Item
    Atmospheric pressure plasma: A high-performance tool for the efficient removal of biofilms
    (San Francisco, CA : Public Library of Science, 2012) Fricke, K.; Koban, I.; Tresp, H.; Jablonowski, L.; Schröder, K.; Kramer, A.; Weltmann, K.-D.; von Woedtke, T.; Kocher, T.
    Introduction: The medical use of non-thermal physical plasmas is intensively investigated for sterilization and surface modification of biomedical materials. A further promising application is the removal or etching of organic substances, e.g., biofilms, from surfaces, because remnants of biofilms after conventional cleaning procedures are capable to entertain inflammatory processes in the adjacent tissues. In general, contamination of surfaces by micro-organisms is a major source of problems in health care. Especially biofilms are the most common type of microbial growth in the human body and therefore, the complete removal of pathogens is mandatory for the prevention of inflammatory infiltrate. Physical plasmas offer a huge potential to inactivate micro-organisms and to remove organic materials through plasma-generated highly reactive agents. Method: In this study a Candida albicans biofilm, formed on polystyrene (PS) wafers, as a prototypic biofilm was used to verify the etching capability of the atmospheric pressure plasma jet operating with two different process gases (argon and argon/oxygen mixture). The capability of plasma-assisted biofilm removal was assessed by microscopic imaging. Results: The Candida albicans biofilm, with a thickness of 10 to 20 μm, was removed within 300 s plasma treatment when oxygen was added to the argon gas discharge, whereas argon plasma alone was practically not sufficient in biofilm removal. The impact of plasma etching on biofilms is localized due to the limited presence of reactive plasma species validated by optical emission spectroscopy.
  • Item
    Ecological and functional optimization of the pretreatment process for plasma based coatings of cutting tools
    (2019) Uhlmann, E.; Riemer, H.; An, S.; Fröhlich, M.; Paschke, H.; Petersen, M.
    Increasing demands in machining of high-tech materials and dry machining lead to higher thermal and mechanical loads on cutting tools. In response to these challenges, enhanced coating solutions are applied to increase performance and life of cutting tools. However, during the production process the cemented carbide substrates are contaminated with grinding oils and residues of organic material. For the subsequent physical vapor deposition (PVD) coating process an intensive and high-quality cleaning process is necessary. In this contribution, plasma electrolytic polishing (PEP) is used as a novel alternative to conventional ecologically harmful cleaning baths. Apart from the ecological advantage, the surface of the substrate can be optimized with regard to the coating adhesion. To examine the performance of the different cleaning processes, machining tests were performed at the IWF to evaluate the layer adhesion and tool life of the tools.
  • Item
    Properties of vacuum arcs generated by switching RMF contacts at different ignition positions
    (Basel : MDPI, 2020) Gortschakow, Sergey; Franke, Steffen; Methling, Ralf; Gonzalez, Diego; Lawall, Andreas; Taylor, Erik D.; Graskowski, Frank
    The influence of initiation behavior of the drawn arc on the arc motion, on arc characteristics during the active phase, as well as on the post-arc parameters, was studied. The study was focused on arc dynamics, determination of the anode surface temperature after current interruption, and diagnostics of metal vapor density after current zero crossing. Different optical diagnostics, namely high-speed camera video enhanced by narrow-band optical filters, near infrared spectroscopy, and optical absorption spectroscopy was applied. The initiation behavior of the drawn arc had a clear influence on arc parameters. Higher local electrode temperature occurs in case of the electrodes with ignition point near the outer electrode boundary. This further causes an enhanced density of chromium vapor, even in cases with lower arc duration. The results of this study are important for design development of switching RMF contacts for future green energy applications. © 2020 by the authors. Licensee MDPI, Basel, Switzerland.