Search Results

Now showing 1 - 2 of 2
  • Item
    Local microstructure evolution at shear bands in metallic glasses with nanoscale phase separation
    (London : Nature Publishing Group, 2016) He, Jie; Kaban, Ivan; Mattern, Norbert; Song, Kaikai; Sun, Baoan; Kim, Do Hyang; Eckert, Jürgen; Greer, A.Lindsay
    At room temperature, plastic flow of metallic glasses (MGs) is sharply localized in shear bands, which are a key feature of the plastic deformation in MGs. Despite their clear importance and decades of study, the conditions for formation of shear bands, their structural evolution and multiplication mechanism are still under debate. In this work, we investigate the local conditions at shear bands in new phase-separated bulk MGs containing glassy nanospheres and exhibiting exceptional plasticity under compression. It is found that the glassy nanospheres within the shear band dissolve through mechanical mixing driven by the sharp strain localization there, while those nearby in the matrix coarsen by Ostwald ripening due to the increased atomic mobility. The experimental evidence demonstrates that there exists an affected zone around the shear band. This zone may arise from low-strain plastic deformation in the matrix between the bands. These results suggest that measured property changes originate not only from the shear bands themselves, but also from the affected zones in the adjacent matrix. This work sheds light on direct visualization of deformation-related effects, in particular increased atomic mobility, in the region around shear bands.
  • Item
    Spin-orbit coupling control of anisotropy, ground state and frustration in 5d2 Sr2MgOsO6
    (London : Nature Publishing Group, 2016) Morrow, Ryan; Taylor, Alice E.; Singh, D.J.; Xiong, Jie; Rodan, Steven; Wolter, A.U.B.; Wurmehl, Sabine; Büchner, Bernd; Stone, M.B.; Kolesnikov, A.I.; Aczel, Adam A.; Christianson, A.D.; Woodward, Patrick M.
    The influence of spin-orbit coupling (SOC) on the physical properties of the 5d2 system Sr2MgOsO6 is probed via a combination of magnetometry, specific heat measurements, elastic and inelastic neutron scattering, and density functional theory calculations. Although a significant degree of frustration is expected, we find that Sr2MgOsO6 orders in a type I antiferromagnetic structure at the remarkably high temperature of 108 K. The measurements presented allow for the first accurate quantification of the size of the magnetic moment in a 5d2 system of 0.60(2) μB –a significantly reduced moment from the expected value for such a system. Furthermore, significant anisotropy is identified via a spin excitation gap, and we confirm by first principles calculations that SOC not only provides the magnetocrystalline anisotropy, but also plays a crucial role in determining both the ground state magnetic order and the size of the local moment in this compound. Through comparison to Sr2ScOsO6, it is demonstrated that SOC-induced anisotropy has the ability to relieve frustration in 5d2 systems relative to their 5d3 counterparts, providing an explanation of the high TN found in Sr2MgOsO6.