Search Results

Now showing 1 - 3 of 3
  • Item
    Local microstructure evolution at shear bands in metallic glasses with nanoscale phase separation
    (London : Nature Publishing Group, 2016) He, Jie; Kaban, Ivan; Mattern, Norbert; Song, Kaikai; Sun, Baoan; Kim, Do Hyang; Eckert, Jürgen; Greer, A.Lindsay
    At room temperature, plastic flow of metallic glasses (MGs) is sharply localized in shear bands, which are a key feature of the plastic deformation in MGs. Despite their clear importance and decades of study, the conditions for formation of shear bands, their structural evolution and multiplication mechanism are still under debate. In this work, we investigate the local conditions at shear bands in new phase-separated bulk MGs containing glassy nanospheres and exhibiting exceptional plasticity under compression. It is found that the glassy nanospheres within the shear band dissolve through mechanical mixing driven by the sharp strain localization there, while those nearby in the matrix coarsen by Ostwald ripening due to the increased atomic mobility. The experimental evidence demonstrates that there exists an affected zone around the shear band. This zone may arise from low-strain plastic deformation in the matrix between the bands. These results suggest that measured property changes originate not only from the shear bands themselves, but also from the affected zones in the adjacent matrix. This work sheds light on direct visualization of deformation-related effects, in particular increased atomic mobility, in the region around shear bands.
  • Item
    Nano-inspired fluidic interactivity for boiling heat transfer: Impact and criteria
    (London : Nature Publishing Group, 2016) Kim, Beom Seok; Choi, Geehong; Shin, Sangwoo; Gemming, Thomas; Cho, Hyung Hee
    The enhancement of boiling heat transfer, the most powerful energy-transferring technology, will lead to milestones in the development of high-efficiency, next-generation energy systems. Perceiving nano-inspired interface functionalities from their rough morphologies, we demonstrate interface-induced liquid refreshing is essential to improve heat transfer by intrinsically avoiding Leidenfrost phenomenon. High liquid accessibility of hemi-wicking and catalytic nucleation, triggered by the morphological and hydrodynamic peculiarities of nano-inspired interfaces, contribute to the critical heat flux (CHF) and the heat transfer coefficient (HTC). Our experiments show CHF is a function of universal hydrodynamic characteristics involving interfacial liquid accessibility and HTC is improved with a higher probability of smaller nuclei with less superheat. Considering the interface-induced and bulk liquid accessibility at boiling, we discuss functionalizing the interactivity between an interface and a counteracting fluid seeking to create a novel interface, a so-called smart interface, for a breakthrough in boiling and its pragmatic application in energy systems.
  • Item
    Towards the better: Intrinsic property amelioration in bulk metallic glasses
    (London : Nature Publishing Group, 2016) Sarac, Baran; Zhang, Long; Kosiba, Konrad; Pauly, Simon; Stoica, Mihai; Eckert, Jürgen
    Tailoring the intrinsic length-scale effects in bulk metallic glasses (BMGs) via post-heat treatment necessitates a systematic analyzing strategy. Although various achievements were made in the past years to structurally enhance the properties of different BMG alloys, the influence of short-term sub-glass transition annealing on the relaxation kinetics is still not fully covered. Here, we aim for unraveling the connection between the physical, (thermo)mechanical and structural changes as a function of selected pre-annealing temperatures and time scales with an in-house developed Cu46Zr44Al8Hf2 based BMG alloy. The controlled formation of nanocrystals below 50 nm with homogenous distribution inside the matrix phase via thermal treatment increase the material’s resistance to strain softening by almost an order of magnitude. The present work determines the design aspects of metallic glasses with enhanced mechanical properties via nanostructural modifications, while postulating a counter-argument to the intrinsic property degradation accounted for long-term annealing.