Search Results

Now showing 1 - 1 of 1
  • Item
    Tm3+/Ho3+ co-doped germanate glass double-clad fiber for broadband emission and lasing above 2 µm
    (Washington D.C. : Optical Society of America, 2019) Kochanowicz, Marcin; Zmojda, Jacek; Miluski, Piotr; Baranowska, Agata; Leich, Martin; Schwuchow, Anka; Jäger, Matthias; Kuwik, M.; Pisarska, Johanna; Pisarski, Wojciech A.; Dorosz, Dominik
    In this paper, a 2 µm broadband emission under 796 nm laser diode excitation in low phonon energy GeO2-Ga2O3-BaO glass system is co-doped with 0.7Tm2O3/(0.07-0.7)Ho2O3 (mol%). The widest emission band (where the Tm3+ → Ho3+ energy transfer efficiency is 63%) was obtained for 0.7Tm2O3/0.15Ho2O3 co-doped glass from which a double-clad optical fiber was realized and investigated. Optimization of Tm3+/Ho3+ concentration enabled the acquisition of broadband amplified spontaneous emission (ASE) in double-clad optical fiber with a full width at half maximum (FWHM): 377 nm and 662 nm for 3 dB and 10 dB bandwidth, respectively. ASE spectrum is a result of the superposition of (Tm3+: 3H4 →Η3F4) 1.45 µm, (Tm3+: 3F4 → 3H6) 1.8 µm and (Ho3+:5I7 → 5I8) 2 µm emission bands. Hence, highly rare-earth co-doped germanate glass is characterized by a remarkably broader ASE spectrum than silica and tellurite fibers showed promising lasing properties for their further application in tunable and dual wavelength lasers.In this paper, a 2 µm broadband emission under 796 nm laser diode excitation in low phonon energy GeO2-Ga2O3-BaO glass system is co-doped with 0.7Tm2O3/(0.07-0.7)Ho2O3 (mol%). The widest emission band (where the Tm3+ → Ho3+ energy transfer efficiency is 63%) was obtained for 0.7Tm2O3/0.15Ho2O3 co-doped glass from which a double-clad optical fiber was realized and investigated. Optimization of Tm3+/Ho3+ concentration enabled the acquisition of broadband amplified spontaneous emission (ASE) in double-clad optical fiber with a full width at half maximum (FWHM): 377 nm and 662 nm for 3 dB and 10 dB bandwidth, respectively. ASE spectrum is a result of the superposition of (Tm3+: 3H4 →Η3F4) 1.45 µm, (Tm3+: 3F4 → 3H6) 1.8 µm and (Ho3+:5I7 → 5I8) 2 µm emission bands. Hence, highly rare-earth co-doped germanate glass is characterized by a remarkably broader ASE spectrum than silica and tellurite fibers showed promising lasing properties for their further application in tunable and dual wavelength lasers.