Search Results

Now showing 1 - 7 of 7
  • Item
    Improving ionospheric predictability requires accurate simulation of the mesospheric polar vortex
    (Lausanne : Frontiers Media, 2022) Harvey, V. Lynn; Randall, Cora E.; Bailey, Scott M.; Becker, Erich; Chau, Jorge L.; Cullens, Chihoko Y.; Goncharenko, Larisa P.; Gordley, Larry L.; Hindley, Neil P.; Lieberman, Ruth S.; Liu, Han-Li; Megner, Linda; Palo, Scott E.; Pedatella, Nicholas M.; Siskind, David E.; Sassi, Fabrizio; Smith, Anne K.; Stober, Gunter; Stolle, Claudia; Yue, Jia
    The mesospheric polar vortex (MPV) plays a critical role in coupling the atmosphere-ionosphere system, so its accurate simulation is imperative for robust predictions of the thermosphere and ionosphere. While the stratospheric polar vortex is widely understood and characterized, the mesospheric polar vortex is much less well-known and observed, a short-coming that must be addressed to improve predictability of the ionosphere. The winter MPV facilitates top-down coupling via the communication of high energy particle precipitation effects from the thermosphere down to the stratosphere, though the details of this mechanism are poorly understood. Coupling from the bottom-up involves gravity waves (GWs), planetary waves (PWs), and tidal interactions that are distinctly different and important during weak vs. strong vortex states, and yet remain poorly understood as well. Moreover, generation and modulation of GWs by the large wind shears at the vortex edge contribute to the generation of traveling atmospheric disturbances and traveling ionospheric disturbances. Unfortunately, representation of the MPV is generally not accurate in state-of-the-art general circulation models, even when compared to the limited observational data available. Models substantially underestimate eastward momentum at the top of the MPV, which limits the ability to predict upward effects in the thermosphere. The zonal wind bias responsible for this missing momentum in models has been attributed to deficiencies in the treatment of GWs and to an inaccurate representation of the high-latitude dynamics. In the coming decade, simulations of the MPV must be improved.
  • Item
    Towards the Identification and Classification of Solar Granulation Structures Using Semantic Segmentation
    (Lausanne : Frontiers Media, 2022) Díaz Castillo, S. M.; Asensio Ramos, A.; Fischer, C. E.; Berdyugina, S. V.
    Solar granulation is the visible signature of convective cells at the solar surface. The granulation cellular pattern observed in the continuum intensity images is characterised by diverse structures e.g., bright individual granules of hot rising gas or dark intergranular lanes. Recently, the access to new instrumentation capabilities has given us the possibility to obtain high-resolution images, which have revealed the overwhelming complexity of granulation (e.g., exploding granules and granular lanes). In that sense, any research focused on understanding solar small-scale phenomena on the solar surface is sustained on the effective identification and localization of the different resolved structures. In this work, we present the initial results of a proposed classification model of solar granulation structures based on neural semantic segmentation. We inspect the ability of the U-net architecture, a convolutional neural network initially proposed for biomedical image segmentation, to be applied to the dense segmentation of solar granulation. We use continuum intensity maps of the IMaX instrument onboard the Sunrise I balloon-borne solar observatory and their corresponding segmented maps as a training set. The training data have been labeled using the multiple-level technique (MLT) and also by hand. We performed several tests of the performance and precision of this approach in order to evaluate the versatility of the U-net architecture. We found an appealing potential of the U-net architecture to identify cellular patterns in solar granulation images reaching an average accuracy above 80% in the initial training experiments.
  • Item
    Impacts of acoustic and gravity waves on the ionosphere
    (Lausanne : Frontiers Media, 2022) Zawdie, Kate; Belehaki, Anna; Burleigh, Meghan; Chou, Min-Yang; Dhadly, Manbharat S.; Greer, Katelynn; Halford, Alexa J.; Hickey, Dustin; Inchin, Pavel; Kaeppler, Stephen R.; Klenzing, Jeff; Narayanan, Viswanathan Lakshmi; Sassi, Fabrizio; Sivakandan, Mani; Smith, Jonathon M.; Zabotin, Nikolay; Zettergren, Matthew D.; Zhang, Shun-Rong
    The impact of regional-scale neutral atmospheric waves has been demonstrated to have profound effects on the ionosphere, but the circumstances under which they generate ionospheric disturbances and seed plasma instabilities are not well understood. Neutral atmospheric waves vary from infrasonic waves of <20 Hz to gravity waves with periods on the order of 10 min, for simplicity, hereafter they are combined under the common term Acoustic and Gravity Waves (AGWs). There are other longer period waves like planetary waves from the lower and middle atmosphere, whose effects are important globally, but they are not considered here. The most ubiquitous and frequently observed impact of AGWs on the ionosphere are Traveling Ionospheric Disturbances (TIDs), but AGWs also affect the global ionosphere/thermosphere circulation and can trigger ionospheric instabilities (e.g., Perkins, Equatorial Spread F). The purpose of this white paper is to outline additional studies and observations that are required in the coming decade to improve our understanding of the impact of AGWs on the ionosphere.
  • Item
    The future of auroral E-region plasma turbulence research
    (Lausanne : Frontiers Media, 2022) Huyghebaert, Devin; Billett, Daniel; Chartier, Alex; Chau, Jorge L.; Hussey, Glenn C.; Hysell, David L.; Ivarsen, Magnus F.; Mesquita, Rafael L. A.; Rojas, Enrique; Vierinen, Juha; Young, Matthew
    The heating caused by ionospheric E-region plasma turbulence has documented global implications for the energy transfer from space into the terrestrial atmosphere. Traveling atmospheric disturbances, neutral wind motion, energy deposition rates, and ionospheric conductance have all been shown to be potentially affected by turbulent plasma heating. Therefore it is proposed to enhance and expand existing ionospheric radar capabilities and fund research into E-region plasma turbulence so that it is possible to more accurately quantify the solar-terrestrial energy budget and study phenomena related to E-region plasma turbulence. The proposed research funding includes the development of models to accurately predict and model the E-region plasma turbulence using particle-in-cell analysis, fluid-based analysis, and hybrid combinations of the two. This review provides an expanded and more detailed description of the past, present, and future of auroral E-region plasma turbulence research compared to the summary report submitted to the National Academy of Sciences Decadal Survey for Solar and Space Physics (Heliophysics) 2024–2033 (Huyghebaert et al., 2022a).
  • Item
    Physics in the mesosphere/lower thermosphere: A personal perspective
    (Lausanne : Frontiers Media, 2022) Lübken, Franz-Josef
    The scope of this paper is to present some progress being made in the last few decades regarding some aspects of physical processes in the mesosphere/lower thermosphere and to point to some open questions. This summary is presented from a personal perspective, i.e., this is not a review of a certain science topic. Most citations reflect my own work or are representative examples only. They are not meant to be complete or comprehensive.
  • Item
    Corrigendum: Multi-instrument observations of the Pajala fireball: Origin, characteristics, and atmospheric implications
    (Lausanne : Frontiers Media, 2022) Vierinen, Juha; Aslaksen, Torstein; Chau, Jorge Luis; Gritsevich, Maria; Gustavsson, Björn; Kastinen, Daniel; Kero, Johan; Kozlovsky, Alexandre; Kværna, Tormod; Midtskogen, Steinar; Näsholm, Sven Peter; Ulich, Thomas; Vegum, Ketil; Lester, Mark
    In the original article, the name of author “Steinar Midskogen” was misspelled. The correct spelling appears above. The authors apologize for this error and state that this does not change the scientific conclusions of the article in any way. The original article has been updated.
  • Item
    Multi-instrument observations of the Pajala fireball: Origin, characteristics, and atmospheric implications
    (Lausanne : Frontiers Media, 2022) Vierinen, Juha; Aslaksen, Torstein; Chau, Jorge Luis; Gritsevich, Maria; Gustavsson, Björn; Kastinen, Daniel; Kero, Johan; Kozlovsky, Alexandre; Kværna, Tormod; Midtskogen, Steinar; Näsholm, Sven Peter; Ulich, Thomas; Vegum, Ketil; Lester, Mark
    Meteor observations provide information about Solar System constituents and their influx onto Earth, their interaction processes in the atmosphere, as well as the neutral dynamics of the upper atmosphere. This study presents optical, radar, and infrasound measurements of a daytime fireball that occurred on 4 December 2020 at 13:30 UTC over Northeast Sweden. The fireball was recorded with two video cameras, allowing a trajectory determination to be made. The orbital parameters are compatible with the Northern Taurid meteor shower. The dynamic mass estimate based on the optical trajectory was found to be 0.6–1.7 kg, but this estimate can greatly vary from the true entry mass significantly due to the assumptions made. The meteor trail plasma was observed with an ionosonde as a sporadic E-like ionogram trace that lasted for 30 min. Infrasound emissions were detected at two sites, having propagation times consistent with a source location at an altitude of 80–90 km. Two VHF specular meteor radars observed a 6 minute long non-specular range spread trail echo as well as a faint head echo. Combined interferometric range-Doppler analysis of the meteor trail echoes at the two radars, allowed estimation of the mesospheric horizontal wind altitude profile, as well as tracking of the gradual deformation of the trail over time due to a prevailing neutral wind shear. This combined analysis indicates that the radar measurements of long-lived non-specular range-spread meteor trails produced by larger meteoroids can be used to measure the meteor radiant by observing the line traveled by the meteor. Furthermore, a multistatic meteor radar observation of these types of events can be used to estimate mesospheric neutral wind altitude profiles.