Search Results

Now showing 1 - 2 of 2
  • Item
    Mode competition in broad-ridge-waveguide lasers
    (Bristol : IOP Publ., 2020) Koester, J.-P.; Putz, A.; Wenzel, H.; Wünsche, H.-J.; Radziunas, M.; Stephan, H.; Wilkens, M.; Zeghuzi, A.; Knigge, A.
    The lateral brightness achievable with high-power GaAs-based laser diodes having long and broad waveguides is commonly regarded to be limited by the onset of higher-order lateral modes. For the study of the lateral-mode competition two complementary simulation tools are applied, representing different classes of approximations. The first tool bases on a completely incoherent superposition of mode intensities and disregards longitudinal effects like spatial hole burning, whereas the second tool relies on a simplified carrier transport and current flow. Both tools yield agreeing power-current characteristics that fit the data measured for 5-23 µm wide ridges. Also, a similarly good qualitative conformance of the near and far fields is found. However, the threshold of individual modes, the partition of power between them at a given current, and details of the near and far fields show differences. These differences are the consequence of a high sensitivity of the mode competition to details of the models and of the device structure. Nevertheless, it can be concluded concordantly that the brightness rises with increasing ridge width irrespective of the onset of more and more lateral modes. The lateral brightness W mm-1at 10 MW cm-2 power density on the front facet of the investigated laser with widest ridge (23 µm) is comparable with best values known from much wider broad-area lasers. In addition, we show that one of the simulation tools is able to predict beam steering and coherent beam coupling without introducing any phenomenological coupling coefficient or asymmetries. © 2020 The Author(s). Published by IOP Publishing Ltd.
  • Item
    Effects of post metallization annealing on Al2O3 atomic layer deposition on n-GaN
    (Bristol : IOP Publ., 2022) Tadmor, Liad; Brusaterra, Enrico; Treidel, Eldad Bahat; Brunner, Frank; Bickel, Nicole; Vandenbroucke, Sofie S. T.; Detavernier, Christophe; Würfl, Joachim; Hilt, Oliver
    The chemical, physical and electrical properties and the robustness of post metallization annealed Al2O3 atomic layers deposited on n-type GaN are investigated in this work. Planar metal insulator capacitors are used to demonstrate a gate-first with following ohmic contacts formation at elevated temperature up to 600 °C process flow. X-ray photoelectron spectroscopy indicates that no new bonds in the Al2O3 layer are formed due to exposure to the elevated annealing temperature. X-ray diffraction measurements show no crystallization of the oxide layer. Atomic force microscopy shows signs of degradation of the sample annealed at 600 °C. Electrical measurements indicate that the elevated annealing temperature results in an increase of the oxide depletion and the deep depletion capacitances simultaneously, that results in a reduction of the flat band voltage to zero, which is explained by fixed oxide charges curing. A forward bias step stress capacitance measurement shows that the total number of induced trapped charges are not strongly affected by the elevated annealing temperatures. Interface trap density of states analysis shows the lowest trapping concentration for the capacitor annealed at 500 °C. Above this temperature, the interface trap density of states increases. When all results are taken into consideration, we have found that the process thermal budget allows for an overlap between the gate oxide post metallization annealing and the ohmic contact formation at 500 °C.