Search Results

Now showing 1 - 3 of 3
  • Item
    Understanding the catalyst-free transformation of amorphous carbon into graphene by current-induced annealing
    (London : Nature Publishing Group, 2013) Barreiro, Amelia; Börrnert, Felix; Avdoshenko, Stanislav M.; Rellinghaus, Bernd; Cuniberti, Gianaurelio; Rümmeli, Mark H.; Vandersypen, Lieven M.K.
    We shed light on the catalyst-free growth of graphene from amorphous carbon (a–C) by current-induced annealing by witnessing the mechanism both with in-situ transmission electron microscopy and with molecular dynamics simulations. Both in experiment and in simulation, we observe that small a–C clusters on top of a graphene substrate rearrange and crystallize into graphene patches. The process is aided by the high temperatures involved and by the van der Waals interactions with the substrate. Furthermore, in the presence of a–C, graphene can grow from the borders of holes and form a seamless graphene sheet, a novel finding that has not been reported before and that is reproduced by the simulations as well. These findings open up new avenues for bottom-up engineering of graphene-based devices.
  • Item
    High-mobility graphene on liquid p-block elements by ultra-low-loss CVD growth
    (London : Nature Publishing Group, 2013) Wang, Jiao; Zeng, Mengqi; Tan, Lifang; Dai, Boya; Deng, Yuan; Rümmeli, Mark; Xu, Haitao; Li, Zishen; Wang, Sheng; Peng, Lianmao; Eckert, Jürgen; Fu, Lei
    The high-quality and low-cost of the graphene preparation method decide whether graphene is put into the applications finally. Enormous efforts have been devoted to understand and optimize the CVD process of graphene over various d-block transition metals (e.g. Cu, Ni and Pt). Here we report the growth of uniform high-quality single-layer, single-crystalline graphene flakes and their continuous films over p-block elements (e.g. Ga) liquid films using ambient-pressure chemical vapor deposition. The graphene shows high crystalline quality with electron mobility reaching levels as high as 7400 cm2 V−1s−1 under ambient conditions. Our employed growth strategy is ultra-low-loss. Only trace amounts of Ga are consumed in the production and transfer of the graphene and expensive film deposition or vacuum systems are not needed. We believe that our research will open up new territory in the field of graphene growth and thus promote its practical application.
  • Item
    CVD growth of large area smooth-edged graphene nanomesh by nanosphere lithography
    (London : Nature Publishing Group, 2013) Wang, Min; Fu, Lei; Gan, Lin; Zhang, Chaohua; Rümmeli, Mark; Bachmatiuk, Alicja; Fang, Ying; Liu, Zhongfan
    Current etching routes to process large graphene sheets into nanoscale graphene so as to open up a bandgap tend to produce structures with rough and disordered edges. This leads to detrimental electron scattering and reduces carrier mobility. In this work, we present a novel yet simple direct-growth strategy to yield graphene nanomesh (GNM) on a patterned Cu foil via nanosphere lithography. Raman spectroscopy and TEM characterizations show that the as-grown GNM has significantly smoother edges than post-growth etched GNM. More importantly, the transistors based on as-grown GNM with neck widths of 65-75 nm have a near 3-fold higher mobility than those derived from etched GNM with the similar neck widths.