Search Results

Now showing 1 - 2 of 2
  • Item
    Controlled assembly of graphene-capped nickel, cobalt and iron silicides
    (London : Nature Publishing Group, 2013) Vilkov, O.; Fedorov, A.; Usachov, D.; Yashina, L.V.; Generalov, A.V.; Borygina, K.; Verbitskiy, N.I.; Grüneis, A.; Vyalikh, D.V.
    In-situ dendrite/metallic glass matrix composites (MGMCs) with a composition of Ti46Zr20V12Cu5Be17 exhibit ultimate tensile strength of 1510 MPa and fracture strain of about 7.6%. A tensile deformation model is established, based on the five-stage classification: (1) elastic-elastic, (2) elastic-plastic, (3) plastic-plastic (yield platform), (4) plastic-plastic (work hardening), and (5) plastic-plastic (softening) stages, analogous to the tensile behavior of common carbon steels. The constitutive relations strongly elucidate the tensile deformation mechanism. In parallel, the simulation results by a finite-element method (FEM) are in good agreement with the experimental findings and theoretical calculations. The present study gives a mathematical model to clarify the work-hardening behavior of dendrites and softening of the amorphous matrix. Furthermore, the model can be employed to simulate the tensile behavior of in-situ dendrite/MGMCs.
  • Item
    Monitoring microbial metabolites using an inductively coupled resonance circuit
    (London : Nature Publishing Group, 2015) Karnaushenko, Daniil; Baraban, Larysa; Ye, Dan; Uguz, Ilke; Mendes, Rafael G.; Rümmeli, Mark H.; de Visser, J. Arjan G.M.; Schmidt, Oliver G.; Cuniberti, Gianaurelio; Makarov, Denys
    We present a new approach to monitor microbial population dynamics in emulsion droplets via changes in metabolite composition, using an inductively coupled LC resonance circuit. The signal measured by such resonance detector provides information on the magnetic field interaction with the bacterial culture, which is complementary to the information accessible by other detection means, based on electric field interaction, i.e. capacitive or resistive, as well as optical techniques. Several charge-related factors, including pH and ammonia concentrations, were identified as possible contributors to the characteristic of resonance detector profile. The setup enables probing the ionic byproducts of microbial metabolic activity at later stages of cell growth, where conventional optical detection methods have no discriminating power.