Search Results

Now showing 1 - 3 of 3
  • Item
    Optimizing Vertical and Lateral Waveguides of kW-Class Laser Bars for Higher Peak Power, Efficiency and Lateral Beam Quality
    (New York, NY : IEEE, 2022) Miah, M. Jarez; Boni, Anisuzzaman; Arslan, Seval; Martin, Dominik; Casa, Pietro Della; Crump, Paul
    GaAs-based, highly-efficient, kW-class, 1-cm laser bars with high peak power P opt and improved beam quality in quasi-continuous-wave mode are presented. The use of an extreme-triple-asymmetric (ETAS) epitaxial layer structure diminishes power saturation of high-power bars at high driving current. The resulting ETAS bars with 4 mm cavity produce a record 1.9 kW peak power, limited by available current supply, with a maximum power conversion efficiency η E = 67% at T HS = 25 °C heat-sink temperature. Both P opt and η E have been increased further by operating the bars at T HS = −70 °C. Sub-zero operation raises the P opt to 2.3 kW and the maximum η E to 74%. A second configuration of ETAS bars with optimized lateral layout is further realized to obtain narrow lateral beam divergence θ up to 2 kA driving current, without sacrificing P opt and η E . A 2–3° lower θ (95% power level) is observed over a wide operating range at room temperature. A high degree of polarization is also maintained across the whole operatingrange.
  • Item
    60% Efficient Monolithically Wavelength-Stabilized 970-nm DBR Broad-Area Lasers
    (New York, NY : IEEE, 2022) Crump, Paul; Miah, M. Jarez; Wilkens, Martin; Fricke, Jorg; Wenzel, Hans; Knigge, Andrea
    Progress in epitaxial design is shown to enable increased optical output power P opt and power conversion efficiency η E and decreased lateral far-field divergence angle in GaAs-based distributed Bragg reflector (DBR) broad-area (BA) diode lasers. We show that the wavelength-locked power can be significantly increased (saturation at high bias current is mitigated) by migrating from an asymmetric large optical cavity (ASLOC) based laser structure to a highly asymmetric (extreme-triple-asymmetric (ETAS)) layer design. For wavelength-stabilization, 7 th order, monolithic DBRs are etched on the surface of fully grown epitaxial layer structures. The investigated ETAS reference Fabry-Pérot (FP) BA lasers without DBRs and with 200 µm stripe width and 4 mm cavity length provide P opt = 29 W (still increasing) at 30 A in continuous-wave mode at room temperature, in contrast to the maximum P opt = 24 W (limited by strong power saturation) of baseline ASLOC lasers. The reference ETAS FP lasers also deliver over 10% higher η E at P opt = 24 W. On the other hand, in comparison to the wavelength-stabilized ASLOC DBR lasers, ETAS DBR lasers show a peak power increment from 14 W to 22 W, and an efficiency increment from 46% to 60% at P opt = 14 W. A narrow spectral width (< 1 nm at 95% power content) is maintained across a very wide operating range. Consistent with earlier studies, a narrower far-field divergence angle and consequently an improved beam-parameter product is also observed, compared to the ASLOC-based lasers.
  • Item
    Stability of ZnSe-Passivated Laser Facets Cleaved in Air and in Ultra-High Vacuum
    (New York, NY : IEEE, 2022) Boschker, Jos E.; Spengler, Uwe; Ressel, Peter; Schmidbauer, Martin; Mogilatenko, Anna; Knigge, Andrea
    Catastrophic optical mirror damage (COMD) is one of the main failure mechanisms limiting the reliability of GaAs based laser diodes. Here, we compare the facet stability of ZnSe-passivated ridge-waveguide lasers (RWLs) that are cleaved in air and subsequently cleaned using atomic hydrogen with RWLs that are cleaved in ultra-high vacuum. RWLs cleaved in ultra-high vacuum show a superior performance and reach power densities up to 58 MW/cm 2 under extended continuous wave operation at 1064 nm. This is attributed to the reduction of defects at the interface between ZnSe and the cleaved facet as evidenced by transmission electron microscopy and X-ray diffraction.