Search Results

Now showing 1 - 5 of 5
  • Item
    Carboxylated nitrile butadiene rubber/hybrid filler composites
    (São Carlos : Universidade Federal de São Carlos, 2012) Mousa, A.; Heinrich, G.; Simon, F.; Wagenknecht, U.; Stöckelhuber, K.-W.; Dweiri, R.
    The surface properties of the OSW and NLS are measured with the dynamic contact-angle technique. The x-ray photoelectron spectroscopy (XPS) of the OSW reveals that the OSW possesses various reactive functional groups namely hydroxyl groups (OH). Hybrid filler from NLS and OSW were incorporated into carboxylated nitrile rubber (XNBR) to produce XNBR hybrid composites. The reaction of OH groups from the OSW with COOH of the XNBR is checked by attenuated total reflectance spectra (ATR-IR) of the composites. The degree of curing ΔM (maximum torque-minimum torque) as a function of hybrid filler as derived from moving die rheometer (MDR) is reported. The stress-strain behavior of the hybrid composites as well as the dynamic mechanical thermal analysis (DMTA) is studied. Bonding quality and dispersion of the hybrid filler with and in XNBR are examined using scanning-transmission electron microscopy (STEM in SEM).
  • Item
    Predicting the dominating factors during heat transfer in magnetocaloric composite wires
    (Amsterdam : Elsevier B.V., 2020) Krautz, M.; Beyer, L.; Funk, A.; Waske, A.; Weise, B.; Freudenberger, J.; Gottschall, T.
    Magnetocaloric composite wires have been studied by pulsed-field measurements up to μ0ΔH = 10 T with a typical rise time of 13 ms in order to evaluate the evolution of the adiabatic temperature change of the core, ΔTad, and to determine the effective temperature change at the surrounding steel jacket, ΔTeff, during the field pulse. An inverse thermal hysteresis is observed for ΔTad due to the delayed thermal transfer. By numerical simulations of application-relevant sinusoidal magnetic field profiles, it can be stated that for field-frequencies of up to two field cycles per second heat can be efficiently transferred from the core to the outside of the jacket. In addition, intense numerical simulations of the temperature change of the core and jacket were performed by varying different parameters, such as frequency, heat capacity, thermal conductivity and interface resistance in order to shed light on their impact on ΔTeff at the outside of the jacket in comparison to ΔTad provided by the core.
  • Item
    MWCNT induced negative real permittivity in a copolyester of Bisphenol-A with terephthalic and isophthalic acids
    (Bristol : IOP Publ., 2020) Özdemir, Zeynep Güven; Daşdan, Dolunay Şakar; Kavak, Pelin; Pionteck, Jürgen; Pötschke, Petra; Voit, Brigitte; SüngüMısırlıoğlu, Banu
    In the present study, the negative real permittivity behavior of a copolyester of bisphenol-A with terephthalic acid and isophthalic acid (PAr) containing 1.5 to 7.5 wt% multi-walled carbon nanotubes (MWCNTs) have been investigated in detail. The structural and morphological analysis of the melt-mixed composites was performed by Fourier transform infrared spectroscopy using attenuated total reflection (FTIR-ATR), atomic force microscopy (AFM), X-ray diffraction (XRD), and light microscopy. The influences of the MWCNT filler on the AC impedance, complex permittivity, and AC conductivity of the PAr polymer matrix were investigated at different operating temperatures varied between 296 K and 373 K. The transition from a negative to positive real permittivity was observed at different crossover frequencies depending on the MWCNT content of the composites whereas pure PAr showed positive values at all frequencies. The negative real permittivity characteristic of the composites was discussed in the context of Drude model. © 2020 The Author(s). Published by IOP Publishing Ltd.
  • Item
    Modelling and Experimental Investigation of Hexagonal Nacre-Like Structure Stiffness
    (Basel : MDPI, 2020) Rouhana, Rami; Stommel, Markus
    A highly ordered, hexagonal, nacre-like composite stiffness is investigated using experiments, simulations, and analytical models. Polystyrene and polyurethane are selected as materials for the manufactured specimens using laser cutting and hand lamination. A simulation geometry is made by digital microscope measurements of the specimens, and a simulation is conducted using material data based on component material characterization. Available analytical models are compared to the experimental results, and a more accurate model is derived specifically for highly ordered hexagonal tablets with relatively large in-plane gaps. The influence of hexagonal width, cut width, and interface thickness are analyzed using the hexagonal nacre-like composite stiffness model. The proposed analytical model converges within 1% with the simulation and experimental results
  • Item
    Grain refinement and deformation mechanisms in room temperature severe plastic deformed Mg-AZ31
    (Basel : MDPI AG, 2013) Knauer, E.; Freudenberger, J.; Marr, T.; Kauffmann, A.; Schultz, L.
    A Ti-AZ31 composite was severely plastically deformed by rotary swaging at room temperature up to a logarithmic deformation strain of 2.98. A value far beyond the forming limit of pure AZ31 when being equivalently deformed. It is observed, that the microstructure evolution in Mg-AZ31 is strongly influenced by twinning. At low strains the [formula presented] twin systems lead to fragmentation of the initial grains. Inside the primary twins, grain refinement takes place by dynamic recrystallization, dynamic recovery and twinning. These mechanisms lead to a final grain size of ≈ 1 μm, while a strong centered ring fibre texture is evolved.