Search Results

Now showing 1 - 2 of 2
  • Item
    Increased biocompatibility and bioactivity after energetic PVD surface treatments
    (Basel : MDPI, 2009) Mändl, S.
    Ion implantation, a common technology in semiconductor processing, has been applied to biomaterials since the 1960s. Using energetic ion bombardment, a general term which includes conventional ion implantation plasma immersion ion implantation (PIII) and ion beam assisted thin film deposition, functionalization of surfaces is possible. By varying and adjusting the process parameters, several surface properties can be attuned simultaneously. Extensive research details improvements in the biocompatibility, mainly by reducing corrosion rates and increasing wear resistance after surface modification. Recently, enhanced bioactivity strongly correlated with the surface topography and less with the surface chemistry has been reported, with an increased roughness on the nanometer scale induced by self-organisation processes during ion bombardment leading to faster cellular adhesion processes. © 2009 by the authors;.
  • Item
    Electrodeposition of nanocrystalline Fe-P coatings: Influence of bath temperature and glycine concentration on structure, mechanical and corrosion behavior
    (Basel : MDPI AG, 2019) Kovalska, N.; Tsyntsaru, N.; Cesiulis, H.; Gebert, A.; Fornell, J.; Pellicer, E.; Sort, J.; Hansal, W.; Kautek, W.
    A detailed electrochemical study and investigation of a Fe-P glycine bath as a function of the temperature and glycine concentrations and current density, and their resulting corrosion and mechanical behavior is presented. A low addition of glycine to the electrolyte led to a drastic increase of the P content. At low Fe-P deposition rates, heterogeneous rough deposits with morphological bumps and pores were observed. By increasing the Fe-P deposition rate, the number of pores were reduced drastically, resulting in smooth coatings. Increasing the P content led to the formation of nanocrystalline grains from an "amorphous-like" state. Coatings with higher P contents exhibited better corrosion resistance and hardening, most likely attributed to grain boundary strengthening.