Search Results

Now showing 1 - 3 of 3
  • Item
    Degradation analysis of tribologically loaded carbon nanotubes and carbon onions
    ([London] : Macmillan Publishers Limited, 2023) MacLucas, T.; Grützmacher, P.; Husmann, S.; Schmauch, J.; Keskin, S.; Suarez, S.; Presser, V.; Gachot, C.; Mücklich, F.
    Coating laser-patterned stainless-steel surfaces with carbon nanotubes (CNT) or carbon onions (CO) forms a tribological system that provides effective solid lubrication. Lubricant retention represents the fundamental mechanism of this system, as storing the particles inside the pattern prevents lubricant depletion in the contact area. In previous works, we used direct laser interference patterning to create line patterns with three different structural depths on AISI 304 stainless-steel platelets. Electrophoretic deposition subsequently coated the patterned surfaces with either CNTs or COs. Ball-on-disc friction tests were conducted to study the effect of structural depth on the solid lubricity of as-described surfaces. The results demonstrated that the shallower the textures, the lower the coefficient of friction, regardless of the applied particle type. This follow-up study examines the carbon nanoparticles’ structural degradation after friction testing on substrates patterned with different structural depths (0.24, 0.36, and 0.77 µm). Raman characterization shows severe degradation of both particle types and is used to classify their degradation state within Ferrari’s three-stage amorphization model. It was further shown that improving CNT lubricity translates into increasing particle defectivity. This is confirmed by electron microscopy, which shows decreasing crystalline domains. Compared to CNTs, CO-derived tribofilms show even more substantial structural degradation.
  • Item
    Counterion condensation and effective charge of PAMAM dendrimers
    (Basel : MDPI AG, 2011) Böhme, U.; Klenge, A.; Hänel, B.; Scheler, U.
    PAMAM dendrimers are used as a model system to investigate the effects of counterion condensation and the effective charge for spherical polyelectrolytes. Because of their amino groups, PAMAM dendrimers are weak polyelectrolytes. Lowering the pH results in an increasing protonation of the amino groups which is monitored via the proton chemical shifts of the adjacent CH2 groups. The effective charge is determined from a combination of diffusion and electrophoresis NMR. The fraction of the charges, which are effective for the interaction with an external electric field or other charges, decreases with increasing generation (size) of the dendrimers.
  • Item
    Charge inversion effects in electrophoresis of polyelectrolytes in the presence of multivalent counterions and transversal electric fields
    (Basel : MDPI AG, 2014) Nedelcu, S.; Sommer, J.-U.
    By molecular dynamics simulations we investigate the transport of charged polymers in confinement, under externally applied electric fields, in straight cylinders of uniform diameter and in the presence of monovalent or multivalent counterions. The applied electric field has two components; a longitudinal component along the axis of the cylinder and a transversal component perpendicular to the cylinder axis. The direction of electrophoretic velocity depends on the polyelectrolyte length, valency of the counterions present in solution and transversal electric field value. A statistical model is put forward in order to explain these observations.