4 results
Search Results
Now showing 1 - 4 of 4
- ItemTerahertz quantum-cascade lasers as high-power and wideband, gapless sources for spectroscopy(Washington, DC : Optical Society of America, 2017) Röben, Benjamin; Lü, Xiang; Hempel, Martin; Biermann, Klaus; Schrottke, Lutz; Grahn, Holger T.Terahertz (THz) quantum-cascade lasers (QCLs) are powerful radiation sources for high-resolution and high-sensitivity spectroscopy with a discrete spectrum between 2 and 5 THz as well as a continuous coverage of several GHz. However, for many applications, a radiation source with a continuous coverage of a substantially larger frequency range is required. We employed a multi-mode THz QCL operated with a fast ramped injection current, which leads to a collective tuning of equally-spaced Fabry-Pérot laser modes exceeding their separation. A continuous coverage over 72 GHz at about 4.7 THz was achieved. We demonstrate that the QCL is superior to conventional sources used in Fourier transform infrared spectroscopy in terms of the signal-to-noise ratio as well as the dynamic range by one to two orders of magnitude. Our results pave the way for versatile THz spectroscopic systems with unprecedented resolution and sensitivity across a wide frequency range.
- ItemIndependently tunable dual-wavelength fiber oscillator with synchronized pulsed emission based on a theta ring cavity and a fiber Bragg grating array(Washington D.C. : Optical Society of America, 2017) Tiess, Tobias; Becker, Martin; Rothhardt, Manfred; Bartelt, Hartmut; Jäger, MatthiasWe present a fiber-integrated laser enabling independent tuning of two emission wavelengths with a synchronized pulsed emission. The discrete tuning concept comprises a theta cavity fiber laser (TCFL), a fiber Bragg grating (FBG) array as a versatile spectral filter, facilitating tailored tuning ranges, and optical gating to control the emission spectrum. A novel electrical driving scheme uniquely enables independently tunable multi-wavelength emission from a single laser oscillator. Tunable dual-wavelength emission is experimentally investigated with a ytterbium (Yb)-doped TCFL using an FBG array with 11 gratings. Over a tuning range of 25 nm, 55 wavelength pairs have been demonstrated with high signal contrast (≈ 40 dB) and narrow linewidth (< 40GHz). Based on the demands of prospective applications, pulse synchronicity is studied with a fiber-based time-delay spectrometer (TDS) simultaneously measuring the joint temporal and spectral pulse properties down to a single-pulse analysis. Accordingly, tunable and fully synchronized dual-wavelength emissions have been verified by driving the TCFL with optimized electrical gating parameters. This unique operation mode achieved in a cost-efficient fiber-integrated laser design targets novel applications e.g. in nonlinear spectroscopy and biophotonics.
- ItemFrequency modulation spectroscopy with a THz quantum-cascade laser(Washington, DC : Optical Society of America, 2013) Eichholz, R.; Richter, H.; Wienold, M.; Schrottke, L.; Hey, R.; Grahn, H.T.; Hübers, H.-W.We report on a terahertz spectrometer for high-resolution molecular spectroscopy based on a quantum-cascade laser. High-frequency modulation (up to 50 MHz) of the laser driving current produces a simultaneous modulation of the frequency and amplitude of the laser output. The modulation generates sidebands, which are symmetrically positioned with respect to the laser carrier frequency. The molecular transition is probed by scanning the sidebands across it. In this way, the absorption and the dispersion caused by the molecular transition are measured. The signals are modeled by taking into account the simultaneous modulation of the frequency and amplitude of the laser emission. This allows for the determination of the strength of the frequency as well as amplitude modulation of the laser and of molecular parameters such as pressure broadening.
- ItemGeneration of crystal-structure transverse patterns via a self-frequency-doubling laser(London : Nature Publishing Group, 2013) Yu, H.; Zhang, H.; Wang, Y.; Wang, Z.; Wang, J.; Petrov, V.Two-dimensional (2D) visible crystal-structure patterns analogous to the quantum harmonic oscillator (QHO) have been experimentally observed in the near- and far-fields of a self-frequency-doubling (SFD) microchip laser. Different with the fundamental modes, the localization of the SFD light is changed with the propagation. Calculation based on Hermite-Gaussian (HG) functions and second harmonic generation theory reproduces well the patterns both in the near- and far-field which correspond to the intensity distribution in coordinate and momentum spaces, respectively. Considering the analogy of wave functions of the transverse HG mode and 2D harmonic oscillator, we propose that the simple monolithic SFD lasers can be used for developing of new materials and devices and testing 2D quantum mechanical theories.