Search Results

Now showing 1 - 4 of 4
  • Item
    Saturation of the anomalous Hall effect at high magnetic fields in altermagnetic RuO2
    (Melville, NY : AIP Publ., 2023) Tschirner, Teresa; Keßler, Philipp; Gonzalez Betancourt, Ruben Dario; Kotte, Tommy; Kriegner, Dominik; Büchner, Bernd; Dufouleur, Joseph; Kamp, Martin; Jovic, Vedran; Smejkal, Libor; Sinova, Jairo; Claessen, Ralph; Jungwirth, Tomas; Moser, Simon; Reichlova, Helena; Veyrat, Louis
    Observations of the anomalous Hall effect in RuO2 and MnTe have demonstrated unconventional time-reversal symmetry breaking in the electronic structure of a recently identified new class of compensated collinear magnets, dubbed altermagnets. While in MnTe, the unconventional anomalous Hall signal accompanied by a vanishing magnetization is observable at remanence, the anomalous Hall effect in RuO2 is excluded by symmetry for the Néel vector pointing along the zero-field [001] easy-axis. Guided by a symmetry analysis and ab initio calculations, a field-induced reorientation of the Néel vector from the easy-axis toward the [110] hard-axis was used to demonstrate the anomalous Hall signal in this altermagnet. We confirm the existence of an anomalous Hall effect in our RuO2 thin-film samples, whose set of magnetic and magneto-transport characteristics is consistent with the earlier report. By performing our measurements at extreme magnetic fields up to 68 T, we reach saturation of the anomalous Hall signal at a field Hc ≃ 55 T that was inaccessible in earlier studies but is consistent with the expected Néel-vector reorientation field.
  • Item
    Phase transition and anomalous low temperature ferromagnetic phase in Pr 0.6Sr 0.4MnO 3 single crystals
    (New York, NY : Springer Science + Business Media B.V., 2009) Rößler, S.; Harikrishnan, S.; Naveen Kumar, C.M.; Bhat, H.L.; Elizabeth, S.; Rößler, U.K.; Steglich, F.; Wirth, S.
    We report on the magnetic and electrical properties of Pr 0.6Sr 0.4MnO 3 single crystals. This compound undergoes a continuous paramagnetic-ferromagnetic transition with a Curie temperature T C301 K and a first-order structural transition at T S64 K. At T S, the magnetic susceptibility exhibits an abrupt jump, and a corresponding small hump is seen in the resistivity. The critical behavior of the static magnetization and the temperature dependence of the resistivity are consistent with the behavior expected for a nearly isotropic ferromagnet with short-range exchange belonging to the Heisenberg universality class. The magnetization (M-H) curves below T S are anomalous in that the virgin curve lies outside the subsequent M-H loops. The hysteretic structural transition at T S as well as the irreversible magnetization processes below T S can be explained by phase separation between a high-temperature orthorhombic and a low-temperature monoclinic ferromagnetic phase.
  • Item
    Layered manganese bismuth tellurides with GeBi4Te7- and GeBi6Te10-type structures: Towards multifunctional materials
    (London : RSC Publ., 2019) Souchay, Daniel; Nentwig, Markus; Günther, Daniel; Keilholz, Simon; de Boor, Johannes; Zeugner, Alexander; Isaeva, Anna; Ruck, Michael; Wolter, Anja U.B.; Büchnerde, Bernd; Oeckler, Oliver
    The crystal structures of new layered manganese bismuth tellurides with the compositions Mn0.85(3)Bi4.10(2)Te7 and Mn0.73(4)Bi6.18(2)Te10 were determined by single-crystal X-ray diffraction, including the use of microfocused synchrotron radiation. These analyses reveal that the layered structures deviate from the idealized stoichiometry of the 12P-GeBi4Te7 (space group P3m1) and 51R-GeBi6Te10 (space group R3m) structure types they adopt. Modified compositions Mn1-xBi4+2x/3Te7 (x = 0.15-0.2) and Mn1-xBi6+2x/3Te10 (x = 0.19-0.26) assume cation vacancies and lead to homogenous bulk samples as confirmed by Rietveld refinements. Electron diffraction patterns exhibit no diffuse streaks that would indicate stacking disorder. The alternating quintuple-layer [M2Te3] and septuple-layer [M3Te4] slabs (M = mixed occupied by Bi and Mn) with 1 : 1 sequence (12P stacking) in Mn0.85Bi4.10Te7 and 2 : 1 sequence (51R stacking) in Mn0.81Bi6.13Te10 were also observed in HRTEM images. Temperature-dependent powder diffraction and differential scanning calorimetry show that the compounds are high-temperature phases, which are metastable at ambient temperature. Magnetization measurements are in accordance with a MnII oxidation state and point at predominantly ferromagnetic coupling in both compounds. The thermoelectric figures of merit of n-type conducting Mn0.85Bi4.10Te7 and Mn0.81Bi6.13Te10 reach zT = 0.25 at 375 °C and zT = 0.28 at 325 °C, respectively. Although the compounds are metastable, compact ingots exhibit still up to 80% of the main phases after thermoelectric measurements up to 400 °C. © The Royal Society of Chemistry 2019.
  • Item
    Photoemission electron microscopy of magneto-ionic effects in La0.7Sr0.3MnO3
    (Melville, NY : AIP Publ., 2020) Wilhelm, Marek; Giesen, Margret; Duchoň, Tomáš; Moors, Marco; Mueller, David N.; Hackl, Johanna; Baeumer, Christoph; Hamed, Mai Hussein; Cao, Lei; Zhang, Hengbo; Petracic, Oleg; Glöß, Maria; Cramm, Stefan; Nemšák, Slavomír; Wiemann, Carsten; Dittmann, Regina; Schneider, Claus M.; Müller, Martina
    Magneto-ionic control of magnetism is a promising route toward the realization of non-volatile memory and memristive devices. Magneto-ionic oxides are particularly interesting for this purpose, exhibiting magnetic switching coupled to resistive switching, with the latter emerging as a perturbation of the oxygen vacancy concentration. Here, we report on electric-field-induced magnetic switching in a La0.7Sr0.3MnO3 (LSMO) thin film. Correlating magnetic and chemical information via photoemission electron microscopy, we show that applying a positive voltage perpendicular to the film surface of LSMO results in the change in the valence of the Mn ions accompanied by a metal-to-insulator transition and a loss of magnetic ordering. Importantly, we demonstrate that the voltage amplitude provides granular control of the phenomena, enabling fine-tuning of the surface electronic structure. Our study provides valuable insight into the switching capabilities of LSMO that can be utilized in magneto-ionic devices. © 2020 Author(s).