Search Results

Now showing 1 - 3 of 3
  • Item
    A non-cytotoxic resin for micro-stereolithography for cell cultures of HUVECs
    (Basel : MDPI, 2020) Männel, Max J.; Fischer, Carolin; Thiele, Julian
    Three-dimensional (3D) printing of microfluidic devices continuously replaces conventional fabrication methods. A versatile tool for achieving microscopic feature sizes and short process times is micro-stereolithography (µSL). However, common resins for µSL lack biocompatibility and are cytotoxic. This work focuses on developing new photo-curable resins as a basis for µSL fabrication of polymer materials and surfaces for cell culture. Different acrylate-and methacrylate-based compositions are screened for material characteristics including wettability, surface roughness, and swelling behavior. For further understanding, the impact of photo-absorber and photo-initiator on the cytotoxicity of 3D-printed substrates is studied. Cell culture experiments with human umbilical vein endothelial cells (HUVECs) in standard polystyrene vessels are compared to 3D-printed parts made from our library of homemade resins. Among these, after optimizing material composition and post-processing, we identify selected mixtures of poly(ethylene glycol) diacrylate (PEGDA) and poly(ethylene glycol) methyl ethyl methacrylate (PEGMEMA) as most suitable to allow for fabricating cell culture platforms that retain both the viability and proliferation of HUVECs. Next, our PEGDA/PEGMEMA resins will be further optimized regarding minimal feature size and cell adhesion to fabricate microscopic (microfluidic) cell culture platforms, e.g., for studying vascularization of HUVECs in vitro. © 2020 by the authors.
  • Item
    Hydrogel microvalves as control elements for parallelized enzymatic cascade reactions in microfluidics
    (Basel : MDPI, 2020) Obst, Franziska; Beck, Anthony; Bishayee, Chayan; Mehner, Philipp J.; Richter, Andreas; Voit, Brigitte; Appelhans, Dietmar
    Compartmentalized microfluidic devices with immobilized catalysts are a valuable tool for overcoming the incompatibility challenge in (bio) catalytic cascade reactions and high-throughput screening of multiple reaction parameters. To achieve flow control in microfluidics, stimuli-responsive hydrogel microvalves were previously introduced. However, an application of this valve concept for the control of multistep reactions was not yet shown. To fill this gap, we show the integration of thermoresponsive poly(N-isopropylacrylamide) (PNiPAAm) microvalves (diameter: 500 and 600 µm) into PDMS-on-glass microfluidic devices for the control of parallelized enzyme-catalyzed cascade reactions. As a proof-of-principle, the biocatalysts glucose oxidase (GOx), horseradish peroxidase (HRP) and myoglobin (Myo) were immobilized in photopatterned hydrogel dot arrays (diameter of the dots: 350 µm, amount of enzymes: 0.13-2.3 µg) within three compartments of the device. Switching of the microvalves was achieved within 4 to 6 s and thereby the fluid pathway of the enzyme substrate solution (5 mmol/L) in the device was determined. Consequently, either the enzyme cascade reaction GOx-HRP or GOx-Myo was performed and continuously quantified by ultraviolet-visible (UV-Vis) spectroscopy. The functionality of the microvalves was shown in four hourly switching cycles and visualized by the path-dependent substrate conversion. © 2020 by the authors.
  • Item
    Dynamics of droplet formation at T-shaped nozzles with elastic feed lines
    (Heidelberg : Springer, 2010) Malsch, D.; Gleichmann, N.; Kielpinski, M.; Mayer, G.; Henkel, T.; Mueller, D.; Van Steijn, V.; Kleijn, C.R.; Kreutzer, M.T.
    We describe the formation of water in oil droplets, which are commonly used in lab-on-a-chip systems for sample generation and dosing, at microfluidic T-shaped nozzles from elastic feed lines. A narrow nozzle forms a barrier for a liquid-liquid interface, such that pressure can build up behind the nozzle up to a critical pressure. Above this critical pressure, the liquid bursts into the main channel. Build-up of pressure is possible when the fluid before the nozzle is compressible or when the channel that leads to the nozzle is elastic. We explore the value of the critical pressure and the time required to achieve it. We describe the fluid flow of the sudden burst, globally in terms of flow rate into the channel and spatially resolved in terms of flow fields measured using micro-PIV. A total of three different stages-the lag phase, a spill out phase, and a linear growth phase-can be clearly discriminated during droplet formation. The lag time linearly scales with the curvature of the interface inside the nozzle and is inversly proportional to the flow rate of the dispersed phase. A complete overview of the evolution of the growth of droplets and the internal flow structure is provided in the digital supplement. © The Author(s) 2009.