Search Results

Now showing 1 - 3 of 3
  • Item
    Small Scale Propulsion: How Systematic Studies of Low Reynolds Number Physics Can Bring Micro/Nanomachines to New Horizons
    (Wilmington DE: Scientific Archives LLC, 2022) Wrede, Paul; Medina-Sánchez, Mariana; Fomin, Vladimir M.
    Micromachines are small-scale human-made machines with remarkable potential for medical treatments, microrobotics and environmental remediation applications. However, meaningful real-world applications are missing. This is mainly caused by their small size leading to unintuitive physics of motion. Motivated by the aim of understanding the fundamental physics at the micrometer scale and thereby overcoming resulting challenges, we discuss the importance of robust models supported by experimental data. Our previously performed study on the switching in propulsion mechanisms for conical tubular catalytic micromotors will be summarized and serve as an example for discussion. We emphasize on the need for systematic experimental studies to enable the design of highly application-oriented micromachines, which can be translated into real-world scenarios.
  • Item
    Precise Localization and Control of Catalytic Janus Micromotors Using Weak Magnetic Fields
    (London : Sage Publishing, 2015) Khalil, Islam S. M.; Magdanz, Veronika; Sanchez, Samuel; Schmidt, Oliver G.; Misra, Sarthak
    We experimentally demonstrate the precise localization of spherical Pt-Silica Janus micromotors (diameter 5 μm) under the influence of controlled magnetic fields. First, we control the motion of the Janus micromotors in two-dimensional (2D) space. The control system achieves precise localization within an average region-of-convergence of 7 μm. Second, we show that these micromotors provide sufficient propulsion force, allowing them to overcome drag and gravitational forces and move both downwards and upwards. This propulsion is studied by moving the micromotors in three-dimensional (3D) space. The micromotors move downwards and upwards at average speeds of 19.1 μm/s and 9.8 μm/s, respectively. Moreover, our closed-loop control system achieves localization in 3D space within an average region-of-convergence of 6.3 μm in diameter. The precise motion control and localization of the Janus micromotors in 2D and 3D spaces provides broad possibilities for nanotechnology applications.
  • Item
    Effect of surfactants on the performance of tubular and spherical micromotors-a comparative study
    (Cambridge : Royal Society of Chemistry, 2014) Simmchen, Juliane; Magdanz, Veronika; Sanchez, Samuel; Chokmaviroj, Sarocha; Ruiz-Molina, Daniel; Baeza, Alejandro; Schmidt, Oliver G.
    The development of artificial micromotors is one of the greatest challenges of modern nanotechnology. Even though many kinds of motors have been published in recent times, systematic studies on the influence of components of the fuel solution are widely missing. Therefore, the autonomous movement of Pt-microtubes and Pt-covered silica particles is comparatively observed in the presence and absence of surfactants in the medium. One representative of each of the three main surfactant classes – anionic (sodium dodecyl sulfate, SDS), cationic (benzalkonium chloride, BACl) and non-ionic (Triton X) – has been chosen and studied.