Search Results

Now showing 1 - 2 of 2
  • Item
    Electrical and magnetic properties of NiTiO3 nanoparticles synthesized by the sol-gel synthesis method and microwave sintering
    (Amsterdam : Elsevier B.V., 2019) Pavithra, C.; Madhuri, W.
    In this paper, we focused on microwave sintered NiTiO3 nanoparticles synthesized via sol-gel method. The crystal structure was determined by the X-ray diffraction. Vibrational bands related to Ni-O and Ti-O bands were confirmed using the Fourier transform infrared spectrum. These NiTiO3 ceramics obeyed semiconductor behavior of Arrhenius type. The activation energy was found to be 0.04 μeV. The M-H curve exhibited superparamagnetic behavior at room temperature.
  • Item
    Stabilization of the ζ-Cu10Sn3 Phase by Ni at Soldering-Relevant Temperatures
    (Heidelberg : Springer Verlag, 2020) Wieser, C.; Hügel, W.; Martin, S.; Freudenberger, J.; Leineweber, A.
    A current issue in electrical engineering is the enhancement of the quality of solder joints. This is mainly associated with the ongoing electrification of transportation as well as the miniaturization of (power) electronics. For the reliability of solder joints, intermetallic phases in the microstructure of the solder are of great importance. The formation of the intermetallic phases in the Cu-Sn solder system was investigated for different annealing temperatures between 472 K and 623 K using pure Cu as well as Cu-1at.%Ni and Cu-3at.%Ni substrate materials. These are relevant for lead frame materials in electronic components. The Cu and Cu-Ni alloys were in contact to galvanic plated Sn. This work is focused on the unexpected formation of the hexagonal ζ-(Cu,Ni)10Sn3 phase at annealing temperatures of 523–623 K, which is far below the eutectoid decomposition temperature of binary ζ-Cu10Sn3 of about 855 K. By using scanning electron microscopy, energy dispersive X-ray spectroscopy, electron backscatter diffraction and X-ray diffraction the presence of the ζ phase was confirmed and its structural properties were analyzed.