Search Results

Now showing 1 - 2 of 2
  • Item
    Nanoscopic tip sensors fabricated by gas phase etching of optical glass fibers
    (Heidelberg : Springer, 2012) Bierlich, J.; Kobelke, J.; Brand, D.; Kirsch, K.; Dellith, J.; Bartelt, H.
    Silica-based fiber tips are used in a variety of spectroscopic, micro- or nano-scopic optical sensor applications and photonic micro-devices. The miniaturization of optical sensor systems and the technical implementation using optical fibers can provide new sensor designs with improved properties and functionality for new applications. The selective-etching of specifically doped silica fibers is a promising method in order to form complex photonic micro structures at the end or within fibers such as tips and cavities in various shapes useful for the all-fiber sensor and imaging applications. In the present study, we investigated the preparation of geometrically predefined, nanoscaled fiber tips by taking advantage of the dopant concentration profiles of highly doped step-index fibers. For this purpose, a gas phase etching process using hydrofluoric acid (HF) vapor was applied. The shaping of the fiber tips was based on very different etching rates as a result of the doping characteristics of specific optical fibers. Technological studies on the influence of the etching gas atmosphere on the temporal tip shaping and the final geometry were performed using undoped and doped silica fibers. The influence of the doping characteristics was investigated in phosphorus-, germanium-, fluorine- and boron-doped glass fibers. Narrow exposed as well as protected internal fiber tips in various shapes and tip radiuses down to less than 15 nm were achieved and characterized geometrically and topologically. For investigations into surface plasmon resonance effects, the fiber tips were coated with nanometer-sized silver layers by means of vapour deposition and finally subjected to an annealing treatment.
  • Item
    Fano-like resonances sustained by Si doped InAsSb plasmonic resonators integrated in GaSb matrix
    (Washington, DC : Optical Society of America, 2015) Taliercio, Thierry; Guilengui, Vilianne NTsame; Cerutti, Laurent; Rodriguez, Jean-Baptiste; Barho, Franziska; Rodrigo, Maria-José Milla; Gonzalez-Posada, Fernando; Tournié, Eric; Niehle, Michael; Trampert, Achim
    By using metal-free plasmonics, we report on the excitation of Fano-like resonances in the mid-infrared where the Fano asymmetric parameter, q, varies when the dielectric environment of the plasmonic resonator changes. We use silicon doped InAsSb alloy deposited by molecular beam epitaxy on GaSb substrate to realize the plasmonic resonators exclusively based on semiconductors. We first demonstrate the possibility to realize high quality samples of embedded InAsSb plasmonic resonators into GaSb host using regrowth technique. The high crystalline quality of the deposited structure is confirmed by scanning transmission electron microscopy (STEM) observation. Second, we report Fano-like resonances associated to localized surface plasmons in both cases: uncovered and covered plasmonic resonators, demonstrating a strong line shape modification. The optical properties of the embedded structures correspond to those modeled by finite-difference time-domain (FDTD) method and by a model based on Fano-like line shape. Our results show that all-semiconductor plasmonics gives the opportunity to build new plasmonic structures with embedded resonators of highly doped semiconductor in a matrix of un-doped semiconductor for mid-IR applications.