Search Results

Now showing 1 - 2 of 2
  • Item
    Layered manganese bismuth tellurides with GeBi4Te7- and GeBi6Te10-type structures: Towards multifunctional materials
    (London : RSC Publ., 2019) Souchay, Daniel; Nentwig, Markus; Günther, Daniel; Keilholz, Simon; de Boor, Johannes; Zeugner, Alexander; Isaeva, Anna; Ruck, Michael; Wolter, Anja U.B.; Büchnerde, Bernd; Oeckler, Oliver
    The crystal structures of new layered manganese bismuth tellurides with the compositions Mn0.85(3)Bi4.10(2)Te7 and Mn0.73(4)Bi6.18(2)Te10 were determined by single-crystal X-ray diffraction, including the use of microfocused synchrotron radiation. These analyses reveal that the layered structures deviate from the idealized stoichiometry of the 12P-GeBi4Te7 (space group P3m1) and 51R-GeBi6Te10 (space group R3m) structure types they adopt. Modified compositions Mn1-xBi4+2x/3Te7 (x = 0.15-0.2) and Mn1-xBi6+2x/3Te10 (x = 0.19-0.26) assume cation vacancies and lead to homogenous bulk samples as confirmed by Rietveld refinements. Electron diffraction patterns exhibit no diffuse streaks that would indicate stacking disorder. The alternating quintuple-layer [M2Te3] and septuple-layer [M3Te4] slabs (M = mixed occupied by Bi and Mn) with 1 : 1 sequence (12P stacking) in Mn0.85Bi4.10Te7 and 2 : 1 sequence (51R stacking) in Mn0.81Bi6.13Te10 were also observed in HRTEM images. Temperature-dependent powder diffraction and differential scanning calorimetry show that the compounds are high-temperature phases, which are metastable at ambient temperature. Magnetization measurements are in accordance with a MnII oxidation state and point at predominantly ferromagnetic coupling in both compounds. The thermoelectric figures of merit of n-type conducting Mn0.85Bi4.10Te7 and Mn0.81Bi6.13Te10 reach zT = 0.25 at 375 °C and zT = 0.28 at 325 °C, respectively. Although the compounds are metastable, compact ingots exhibit still up to 80% of the main phases after thermoelectric measurements up to 400 °C. © The Royal Society of Chemistry 2019.
  • Item
    Vectorial calibration of superconducting magnets with a quantum magnetic sensor
    (Melville, NY : American Inst. of Physics, 2020) Botsch, L.; Raatz, N.; Pezzagna, S.; Staacke, R.; John, R.; Abel, B.; Esquinazi, P. D.; Meijer, J.; Diziain, S.
    Cryogenic vector magnet systems make it possible to study the anisotropic magnetic properties of materials without mechanically rotating the sample but by electrically tilting and turning the magnetic field. Vector magnetic fields generated inside superconducting vector magnets are generally measured with three Hall sensors. These three probes must be calibrated over a range of temperatures, and the temperature-dependent calibrations cannot be easily carried out inside an already magnetized superconducting magnet because of remaining magnetic fields. A single magnetometer based on an ensemble of nitrogen vacancy (NV) centers in diamond is proposed to overcome these limitations. The quenching of the photoluminescence intensity emitted by NV centers can determine the field in the remanent state of the solenoids and allows an easy and fast canceling of the residual magnetic field. Once the field is reset to zero, the calibration of this magnetometer can be performed in situ by a single measurement of an optically detected magnetic resonance spectrum. Thereby, these magnetometers do not require any additional temperature-dependent calibrations outside the magnet and offer the possibility to measure vector magnetic fields in three dimensions with a single sensor. Its axial alignment is given by the crystal structure of the diamond host, which increases the accuracy of the field orientation measured with this sensor, compared to the classical arrangement of three Hall sensors. It is foreseeable that the magnetometer described here has the potential to be applied in various fields in the future, such as the characterization of ferromagnetic core solenoids or other magnetic arrangements. © 2020 Author(s).