Search Results

Now showing 1 - 2 of 2
  • Item
    The Bain library: A Cu-Au buffer template for a continuous variation of lattice parameters in epitaxial films
    (New York : American Institute of Physics, 2014) Kauffmann-Weiss, S.; Hamann, S.; Reichel, L.; Siegel, A.; Alexandrakis, V.; Heller, R.; Schultz, L.; Ludwig, A.; Fähler, S.
    Smallest variations of the lattice parameter result in significant changes in material properties. Whereas in bulk, lattice parameters can only be changed by composition or temperature, coherent epitaxial growth of thin films on single crystals allows adjusting the lattice parameters independently. Up to now only discrete values were accessible by using different buffer or substrate materials. We realize a lateral variation of in-plane lattice parameters using combinatorial film deposition of epitaxial Cu-Au on a 4-in. Si wafer. This template gives the possibility to adjust the in-plane lattice parameter over a wide range from 0.365 nm up to 0.382 nm.
  • Item
    Observation of strontium segregation in LaAlO3/SrTiO3 and NdGaO3/SrTiO3 oxide heterostructures by X-ray photoemission spectroscopy
    (New York : American Institute of Physics, 2014) Treske, Uwe; Heming, Nadine; Knupfer, Martin; Büchner, Bernd; Koitzsch, Andreas; Di Gennaro, Emiliano; Scotti di Uccio, Umberto; Miletto Granozio, Fabio; Krause, Stefan
    LaAlO3 and NdGaO3 thin films of different thicknesses have been grown by pulsed laser deposition on TiO2-terminated SrTiO3 single crystals and investigated by soft X-ray photoemission spectroscopy. The surface sensitivity of the measurements has been tuned by varying photon energy hν and emission angle Θ. In contrast to the core levels of the other elements, the Sr 3d line shows an unexpected splitting for higher surface sensitivity, signaling the presence of a second strontium component. From our quantitative analysis we conclude that during the growth process Sr atoms diffuse away from the substrate and segregate at the surface of the heterostructure, possibly forming strontium oxide