Search Results

Now showing 1 - 4 of 4
  • Item
    Viscous Flow of Supercooled Liquid in a Zr-Based Bulk Metallic Glass Synthesized by Additive Manufacturing
    (Basel : MDPI, 2020) Kosiba, Konrad; Deng, Liang; Scudino, Sergio
    The constraint in sample size imposed by the critical cooling rate necessary for glass formation using conventional casting techniques is possibly the most critical limitation for the extensive use of bulk metallic glasses (BMGs) in structural applications. This drawback has been recently overcome by processing glass-forming systems via additive manufacturing, finally enabling the synthesis of BMGs with no size limitation. Although processing by additive manufacturing allows fabricating BMG objects with virtually no shape limitation, thermoplastic forming of additively manufactured BMGs may be necessary for materials optimization. Thermoplastic forming of BMGs is carried out above the glass transition temperature, where these materials behave as highly viscous liquids; the analysis of the viscosity is thus of primary importance. In this work, the temperature dependence of viscosity of the Zr52.5Cu17.9Ni14.6Al10Ti5 metallic glass fabricated by casting and laser powder bed fusion (LPBF) is investigated. We observed minor differences in the viscous flow of the specimens fabricated by the different techniques that can be ascribed to the higher porosity of the LPBF metallic glass. Nevertheless, the present results reveal a similar overall variation of viscosity in the cast and LPBF materials, which offers the opportunity to shape additively manufactured BMGs using already developed thermoplastic forming techniques.
  • Item
    Phase formation, thermal stability and mechanical properties of a Cu-Al-Ni-Mn shape memory alloy prepared by selective laser melting
    (São Carlos : Universidade Federal de São Carlos, 2015) Gargarella, Piter; Kiminami, Cláudio Shyinti; Mazzer, Eric Marchezini; Cava, Régis Daniel; Basilio, Leonardo Albuquerque; Bolfarini, Claudemiro; Botta, Walter José; Eckert, Jürgen; Gustmann, Tobias; Pauly, Simon
    Selective laser melting (SLM) is an additive manufacturing process used to produce parts with complex geometries layer by layer. This rapid solidification method allows fabricating samples in a non-equilibrium state and with refined microstructure. In this work, this method is used to fabricate 3 mm diameter rods of a Cu-based shape memory alloy. The phase formation, thermal stability and mechanical properties were investigated and correlated. Samples with a relative density higher than 92% and without cracks were obtained. A single monoclinic martensitic phase was formed with average grain size ranging between 28 to 36 μm. The samples exhibit a reverse martensitic transformation temperature around 106 ± 2 °C and a large plasticity in compression (around 15±1%) with a typical “double-yielding” behaviour.
  • Item
    Laser Powder Bed Fusion Processing of Fe-Mn-Al-Ni Shape Memory Alloy - On the Effect of Elevated Platform Temperatures
    (Basel : MDPI, 2021) Ewald, Felix Clemens; Brenne, Florian; Gustmann, Tobias; Vollmer, Malte; Krooß, Philipp; Niendorf, Thomas
    In order to overcome constraints related to crack formation during additive processing (laser powder bed fusion, L-BPF) of Fe-Mn-Al-Ni, the potential of high-temperature L-PBF processing was investigated in the present study. The effect of the process parameters on crack formation, grain structure, and phase distribution in the as-built condition, as well as in the course of cyclic heat treatment was examined by microstructural analysis. Optimized processing parameters were applied to fabricate cylindrical samples featuring a crack-free and columnar grained microstructure. In the course of cyclic heat treatment, abnormal grain growth (AGG) sets in, eventually promoting the evolution of a bamboo like microstructure. Testing under tensile load revealed a well-defined stress plateau and reversible strains of up to 4%.
  • Item
    Selective laser melting of Ti-45Nb alloy
    (Basel : MDPI, 2015) Schwab, Holger; Prashanth, Konda Gokuldoss; Löber, Lukas; Kühn, Uta; Eckert, Jürgen
    Ti-45Nb is one of the potential alloys that can be applied for biomedical applications as implants due to its low Young’s modulus. Ti-45Nb (wt.%) gas atomized powders were used to produce bulk samples by selective laser melting with three different parameter sets (energy inputs). A β-phase microstructure consisting of elliptical grains with an enriched edge of titanium was observed by scanning electron microscopy and X-ray diffraction studies. The mechanical properties of these samples were evaluated using hardness and compression tests, which suggested that the strength of the samples increases with increasing energy input within the range considered.