Search Results

Now showing 1 - 2 of 2
  • Item
    Hybrid nanostructured particles via surfactant-free double miniemulsion polymerization
    ([London] : Nature Publishing Group UK, 2018) Zhao, Yongliang; Liu, Junli; Chen, Zhi; Zhu, Xiaomin; Möller, Martin
    Double emulsions are complex fluid systems, in which droplets of a dispersed liquid phase contain even smaller dispersed liquid droplets. Particularly, water-in-oil-in-water double emulsions provide significant advantages over simple oil-in-water emulsions for microencapsulation, such as carrier of both aqueous and oily payloads and sustained release profile. However, double emulsions are thermodynamically unstable systems consisting typically of relatively large droplets. Here we show that nanoscale water-in-oil-in-water double emulsions can be prepared by adding a silica precursor polymer, hyperbranched polyethoxysiloxane, to the oil phase without any additional surfactants. The resulting double miniemulsions are transformed to robust water@SiO2@polymer@SiO2 nanocapsules via conversion of the precursor to silica and polymerization of the oil phase. Other intriguing nanostructures like nanorattles and Janus-like nanomushrooms can also be obtained by changing preparation conditions. This simple surfactant-free double miniemulsion polymerization technique opens a promising avenue for mass production of various complex hybrid nanostructures that are amenable to numerous applications.
  • Item
    Volume fraction determination of binary liquid mixtures by measurement of the equalization wavelength
    (Basel : MDPI, 2010) Martincek, I.; Pudis, D.; Kacik, D.; Schuster, K.
    A method for determination of the volume fraction in binary liquid mixtures by measurement of the equalization wavelength of intermodal interference of modes LP01 and LP11 in a liquid core optical fiber is presented in this paper. This method was studied using a liquid core optical fiber with fused silica cladding and a core made up of a binary silicon oil/chloroform liquid mixture with different volume fractions of chloroform. The interference technique used allows us to determine the chloroform volume fraction in the binary mixture with accuracy better than 0.1%. One of the most attractive advantages of presented method is very small volume of investigated mixture needed, as only a few hundred picoliters are necessary for reliable results. © 2010 by the authors.