Search Results

Now showing 1 - 10 of 31
  • Item
    A Flashback on Control Logic Injection Attacks against Programmable Logic Controllers
    (Basel : MDPI, 2022) Alsabbagh, Wael; Langendörfer, Peter
    Programmable logic controllers (PLCs) make up a substantial part of critical infrastructures (CIs) and industrial control systems (ICSs). They are programmed with a control logic that defines how to drive and operate critical processes such as nuclear power plants, petrochemical factories, water treatment systems, and other facilities. Unfortunately, these devices are not fully secure and are prone to malicious threats, especially those exploiting vulnerabilities in the control logic of PLCs. Such threats are known as control logic injection attacks. They mainly aim at sabotaging physical processes controlled by exposed PLCs, causing catastrophic damage to target systems as shown by Stuxnet. Looking back over the last decade, many research endeavors exploring and discussing these threats have been published. In this article, we present a flashback on the recent works related to control logic injection attacks against PLCs. To this end, we provide the security research community with a new systematization based on the attacker techniques under three main attack scenarios. For each study presented in this work, we overview the attack strategies, tools, security goals, infected devices, and underlying vulnerabilities. Based on our analysis, we highlight the current security challenges in protecting PLCs from such severe attacks and suggest security recommendations for future research directions.
  • Item
    Thermoelectric Characterization Platform for Electrochemically Deposited Materials
    (Weinheim : Wiley-VCH Verlag GmbH & Co. KG, 2020) Barati, Vida; Garcia Fernandez, Javier; Geishendorf, Kevin; Schnatmann, Lauritz Ule; Lammel, Michaela; Kunzmann, Alexander; Pérez, Nicolás; Li, Guodong; Schierning, Gabi; Nielsch, Kornelius; Reith, Heiko
    Successful optimization of the thermoelectric (TE) performance of materials, described by the figure of merit zT, is a key enabler for its application in energy harvesting or Peltier cooling devices. While the zT value of bulk materials is accessible by a variety of commercial measurement setups, precise determination of the zT value for thin and thick films remains a great challenge. This is particularly relevant for films synthesized by electrochemical deposition, where the TE material is deposited onto an electrically conductive seed layer causing an in-plane short circuit. Therefore, a platform for full in-plane zT characterization of electrochemically deposited TE materials is developed, eliminating the impact of the electrically conducting seed layer. The characterization is done using a suspended TE material within a transport device which was prepared by photolithography in combination with chemical etching steps. An analytical model to determine the thermal conductivity is developed and the results verified using finite element simulations. Taken together, the full in-plane zT characterization provides an inevitable milestone for material optimization under realistic conditions in TE devices. © 2020 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
  • Item
    Improving the electrical and structural stability of highly piezoresistive nickel–carbon sensor thin films
    (Göttingen : Copernicus Publ., 2022) Schultes, Günter; Cerino, Mario; Lellig, Angela; Koch, Marcus
    The family of sputter deposited granular metal-based carbon-containing sensor films is known for their high sensitivity transforming force-dependent strain into electrical resistance change. Among them nickel–carbon thin films possess a gauge factor of up to 30, compared to only 2 for traditional sensor films of metal alloys. This high sensitivity is based on disordered interparticle tunneling through barriers of graphite-like carbon walls between metal–carbon particles of columnar shape. Force and pressure sensors would benefit a lot from the elevated piezoresistivity. A disadvantage, however, is a disturbing temporal creep and drift of the resistance under load and temperature. This contribution shows how to stabilize such sensor films. A significant stabilization is achieved by partially replacing nickel with chromium, albeit at the expense of sensitivity. The more chromium used in these NixCr1−x-C layers, the higher the optimum annealing temperature can be selected and the better the electrical stabilization. A good compromise while maintaining sensitivities well above the standard of 2 is identified for films with x=0.5 to 0.9, stabilized by optimized temperature treatments. The stabilizing effect of chromium is revealed by transmission electron microscopy with elemental analysis. The post-annealing drives segregation processes in the layer material. While the interior of the layer is depleted of chromium and carbon, boundary layers are formed. Chromium is enriched near the surface boundary, oxidized in air and forms chromium-rich oxide sub-layers, which are chemically very stable and protect against further reactions and corrosion. As a result, creep and drift errors are greatly reduced, so that the optimized sensor coatings are now suitable for widespread use.
  • Item
    Fibre optic sensing system for monitoring of current collectors and overhead contact lines of railways
    (Göttingen : Copernicus Publ., 2017) Schröder, Kerstin; Rothhardt, Manfred; Ecke, Wolfgang; Richter, Uwe; Sonntag, André; Bartelt, Hartmut
    Fibre optic sensors are excellent tools to use for monitoring high-voltage current collectors. Because of their small cross section and electrical neutrality, they are easily integrated into the current collector strip and are well specialized for detection of high-speed load events. The conventional contact force measurement with four force sensors below the collector strips can also be simplified by using fibre optic force and acceleration sensors.
  • Item
    Granular metal-carbon nanocomposites as piezoresistive sensor films - Part 1: Experimental results and morphology
    (Göttingen : Copernicus Publ., 2018) Schultes, Günter; Schmid-Engel, Hanna; Schwebke, Silvan; Werner, Ulf
    We have produced granular films based on carbon and different transition metals by means of plasma deposition processes. Some of the films possess an increased strain sensitivity compared to metallic films. They respond to strain almost linearly with gauge factors of up to 30 if strained longitudinally, while in the transverse direction about half of the effect is still measured. In addition, the film's thermal coefficient of resistance is adjustable by the metal concentration. The influence of metal concentration was investigated for the elements Ni, Pd, Fe, Pt, W, and Cr, while the elements Co, Au, Ag, Al, Ti, and Cu were studied briefly. Only Ni and Pd have a pronounced strain sensitivity at 55- €±- €5- €at.- €% (atomic percent) of metal, among which Ni–C is far more stable. Two phases are identified by transmission electron microscopy and X-ray diffraction: metal-containing nanocolumns densely packed in a surrounding carbon phase. We differentiate three groups of metals, due to their respective affinity to carbon. It turns out that only nickel has the capability to bond and form a stable and closed encapsulation of GLC around each nanoparticle. In this structure, the electron transport is in part accomplished by tunneling processes across the basal planes of the graphitic encapsulation. Hence, we hold these tunneling processes responsible for the increased gauge factors of Ni–C composites. The other elements are unable to form graphitic encapsulations and thus do not exhibit elevated gauge factors.
  • Item
    Ultrafast imaging Raman spectroscopy of large-area samples without stepwise scanning
    (Göttingen : Copernicus Publ., 2016) Schmälzlin, Elmar; Moralejo, Benito; Bodenmüller, Daniel; Darvin, Maxim E.; Thiede, Gisela; Roth, Martin M.
    Step-by-step, time-consuming scanning of the sample is still the state-of-the-art in imaging Raman spectroscopy. Even for a few 100 image points the measurement time may add up to minutes or hours. A radical decrease in measurement time can be achieved by applying multiplex spectrographs coupled to imaging fiber bundles that are successfully used in astronomy. For optimal use of the scarce and expensive observation time at astronomical observatories, special high-performance spectrograph systems were developed. They are designed for recording thousands of spatially resolved spectra of a two-dimensional image field within one single exposure. Transferring this technology to imaging Raman spectroscopy allows a considerably faster acquisition of chemical maps. Currently, an imaging field of up to 1 cm2 can be investigated. For porcine skin the required measurement time is less than 1 min. For this reason, this technique is of particular interest for medical diagnostics, e.g., the identification of potentially cancerous abnormalities of skin tissue.
  • Item
    Granular metal-carbon nanocomposites as piezoresistive sensor films-Part 2: Modeling longitudinal and transverse strain sensitivity
    (Göttingen : Copernicus Publ., 2018) Schwebke, Silvan; Werner, Ulf; Schultes, Günter
    Granular and columnar nickel-carbon composites may exhibit large strain sensitivity, which makes them an interesting sensor material. Based on experimental results and morphological characterization of the material, we develop a model of the electron transport in the film and use it to explain its piezoresistive effect. First we describe a model for the electron transport from particle to particle. The model is then applied in Monte Carlo simulations of the resistance and strain properties of the disordered films that give a first explanation of film properties. The simulations give insights into the origin of the transverse sensitivity and show the influence of various parameters such as particle separation and geometric disorder. An important influence towards larger strain sensitivity is local strain enhancement due to different elastic moduli of metal particles and carbon matrix.
  • Item
    Paradigm change in hydrogel sensor manufacturing: From recipe-driven to specification-driven process optimization
    (Göttingen : Copernicus Publ., 2016) Windisch, M.; Eichhorn, K.-J.; Lienig, J.; Gerlach, G.; Schulze, L.
    The volume production of industrial hydrogel sensors lacks a quality-assuring manufacturing technique for thin polymer films with reproducible properties. Overcoming this problem requires a paradigm change from the current recipe-driven manufacturing process to a specification-driven one. This requires techniques to measure quality-determining hydrogel film properties as well as tools and methods for the control and optimization of the manufacturing process. In this paper we present an approach that comprehensively addresses these issues. The influence of process parameters on the hydrogel film properties and the resulting sensor characteristics have been assessed by means of batch manufacturing tests and the application of several measurement techniques. Based on these investigations, we present novel methods and a tool for the optimization of the cross-linking process step, with the latter being crucial for the sensor sensitivity. Our approach is applicable to various sensor designs with different hydrogels. It has been successfully tested with a sensor solution for surface technology based on PVA/PAA hydrogel as sensing layer and a piezoelectric thickness shear resonator as transducer. Finally, unresolved issues regarding the measurement of hydrogel film parameters are outlined for future research.
  • Item
    Nanomaterial-decorated micromotors for enhanced photoacoustic imaging
    (Berlin ; Heidelberg : Springer, 2023) Aziz, Azaam; Nauber, Richard; Sánchez Iglesias, Ana; Tang, Min; Ma, Libo; Liz-Marzán, Luis M.; Schmidt, Oliver G.; Medina-Sánchez, Mariana
    Micro-and nanorobots have the potential to perform non-invasive drug delivery, sensing, and surgery in living organisms, with the aid of diverse medical imaging techniques. To perform such actions, microrobots require high spatiotemporal resolution tracking with real-time closed-loop feedback. To that end, photoacoustic imaging has appeared as a promising technique for imaging microrobots in deep tissue with higher molecular specificity and contrast. Here, we present different strategies to track magnetically-driven micromotors with improved contrast and specificity using dedicated contrast agents (Au nanorods and nanostars). Furthermore, we discuss the possibility of improving the light absorption properties of the employed nanomaterials considering possible light scattering and coupling to the underlying metal-oxide layers on the micromotor’s surface. For that, 2D COMSOL simulation and experimental results were correlated, confirming that an increased spacing between the Au-nanostructures and the increase of thickness of the underlying oxide layer lead to enhanced light absorption and preservation of the characteristic absorption peak. These characteristics are important when visualizing the micromotors in a complex in vivo environment, to distinguish them from the light absorption properties of the surrounding natural chromophores.
  • Item
    A multifunctional highway system incorporating superconductor levitated vehicles and liquefied hydrogen
    (Melville, NY : AIP Publishing, 2023) Vakaliuk, O.; Song, Shaowei; Floegel-Delor, U.; Werfel, F.; Nielsch, Kornelius; Ren, Zhifeng
    Magnetic levitation for the transport of people and goods using bulk superconductors and electrical power transmission using superconductors have both been demonstrated, but neither has been developed for daily use due to technological deficiencies and high costs. We envision combining the transport of people and goods and energy transmission and storage in a single system. Such a system, built on existing highway infrastructure, incorporates a superconductor guideway, allowing for simultaneous levitation of vehicles with magnetized undercarriages for rapid transport without schedule limitations and lossless transmission and storage of electricity. Incorporating liquefied hydrogen additionally allows for simultaneous cooling of the superconductor guideway and sustainable energy transport and storage. Here, we report the successful demonstration of the primary technical prerequisite, levitating a magnet above a superconductor guideway.