Search Results

Now showing 1 - 10 of 33
  • Item
    Charge‐Compensated N‐Doped π ‐Conjugated Polymers: Toward both Thermodynamic Stability of N‐Doped States in Water and High Electron Conductivity
    (Weinheim : Wiley-VCH, 2022) Borrmann, Fabian; Tsuda, Takuya; Guskova, Olga; Kiriy, Nataliya; Hoffmann, Cedric; Neusser, David; Ludwigs, Sabine; Lappan, Uwe; Simon, Frank; Geisler, Martin; Debnath, Bipasha; Krupskaya, Yulia; Al‐Hussein, Mahmoud; Kiriy, Anton
    The understanding and applications of electron-conducting π-conjugated polymers with naphtalene diimide (NDI) blocks show remarkable progress in recent years. Such polymers demonstrate a facilitated n-doping due to the strong electron deficiency of the main polymer chain and the presence of the positively charged side groups stabilizing a negative charge of the n-doped backbone. Here, the n-type conducting NDI polymer with enhanced stability of its n-doped states for prospective “in-water” applications is developed. A combined experimental–theoretical approach is used to identify critical features and parameters that control the doping and electron transport process. The facilitated polymer reduction ability and the thermodynamic stability in water are confirmed by electrochemical measurements and doping studies. This material also demonstrates a high conductivity of 10−2 S cm−1 under ambient conditions and 10−1 S cm−1 in vacuum. The modeling explains the stabilizing effects for various dopants. The simulations show a significant doping-induced “collapse” of the positively charged side chains on the core bearing a partial negative charge. This explains a decrease in the lamellar spacing observed in experiments. This study fundamentally enables a novel pathway for achieving both thermodynamic stability of the n-doped states in water and the high electron conductivity of polymers.
  • Item
    Elucidating Structure Formation in Highly Oriented Triple Cation Perovskite Films
    (Weinheim : Wiley-VCH, 2023) Telschow, Oscar; Scheffczyk, Niels; Hinderhofer, Alexander; Merten, Lena; Kneschaurek, Ekaterina; Bertram, Florian; Zhou, Qi; Löffler, Markus; Schreiber, Frank; Paulus, Fabian; Vaynzof, Yana
    Metal halide perovskites are an emerging class of crystalline semiconductors of great interest for application in optoelectronics. Their properties are dictated not only by their composition, but also by their crystalline structure and microstructure. While significant efforts are dedicated to the development of strategies for microstructural control, significantly less is known about the processes that govern the formation of their crystalline structure in thin films, in particular in the context of crystalline orientation. This work investigates the formation of highly oriented triple cation perovskite films fabricated by utilizing a range of alcohols as an antisolvent. Examining the film formation by in situ grazing-incidence wide-angle X-ray scattering reveals the presence of a short-lived highly oriented crystalline intermediate, which is identified as FAI-PbI2-xDMSO. The intermediate phase templates the crystallization of the perovskite layer, resulting in highly oriented perovskite layers. The formation of this dimethylsulfoxide (DMSO) containing intermediate is triggered by the selective removal of N,N-dimethylformamide (DMF) when alcohols are used as an antisolvent, consequently leading to differing degrees of orientation depending on the antisolvent properties. Finally, this work demonstrates that photovoltaic devices fabricated from the highly oriented films, are superior to those with a random polycrystalline structure in terms of both performance and stability.
  • Item
    Introducing the Open Energy Ontology: Enhancing data interpretation and interfacing in energy systems analysis
    (Amsterdam : Elsevier ScienceDirect, 2021) Booshehri, Meisam; Emele, Lukas; Flügel, Simon; Förster, Hannah; Frey, Johannes; Frey, Ulrich; Glauer, Martin; Hastings, Janna; Hofmann, Christian; Hoyer-Klick, Carsten; Hülk, Ludwig; Kleinau, Anna; Knosala, Kevin; Kotzur, Leander; Kuckertz, Patrick; Mossakowski, Till; Muschner, Christoph; Neuhaus, Fabian; Pehl, Michaja; Robinius, Martin; Sehn, Vera; Stappel, Mirjam
    Heterogeneous data, different definitions and incompatible models are a huge problem in many domains, with no exception for the field of energy systems analysis. Hence, it is hard to re-use results, compare model results or couple models at all. Ontologies provide a precisely defined vocabulary to build a common and shared conceptualisation of the energy domain. Here, we present the Open Energy Ontology (OEO) developed for the domain of energy systems analysis. Using the OEO provides several benefits for the community. First, it enables consistent annotation of large amounts of data from various research projects. One example is the Open Energy Platform (OEP). Adding such annotations makes data semantically searchable, exchangeable, re-usable and interoperable. Second, computational model coupling becomes much easier. The advantages of using an ontology such as the OEO are demonstrated with three use cases: data representation, data annotation and interface homogenisation. We also describe how the ontology can be used for linked open data (LOD).
  • Item
    Regulating Bacterial Behavior within Hydrogels of Tunable Viscoelasticity
    (Weinheim : Wiley-VCH, 2022) Bhusari, Shardul; Sankaran, Shrikrishnan; del Campo, Aránzazu
    Engineered living materials (ELMs) are a new class of materials in which living organism incorporated into diffusive matrices uptake a fundamental role in material's composition and function. Understanding how the spatial confinement in 3D can regulate the behavior of the embedded cells is crucial to design and predict ELM's function, minimize their environmental impact and facilitate their translation into applied materials. This study investigates the growth and metabolic activity of bacteria within an associative hydrogel network (Pluronic-based) with mechanical properties that can be tuned by introducing a variable degree of acrylate crosslinks. Individual bacteria distributed in the hydrogel matrix at low density form functional colonies whose size is controlled by the extent of permanent crosslinks. With increasing stiffness and elastic response to deformation of the matrix, a decrease in colony volumes and an increase in their sphericity are observed. Protein production follows a different pattern with higher production yields occurring in networks with intermediate permanent crosslinking degrees. These results demonstrate that matrix design can be used to control and regulate the composition and function of ELMs containing microorganisms. Interestingly, design parameters for matrices to regulate bacteria behavior show similarities to those elucidated for 3D culture of mammalian cells.
  • Item
    In Situ Fabrication of Freestanding Single-Atom-Thick 2D Metal/Metallene and 2D Metal/ Metallene Oxide Membranes: Recent Developments
    (Weinheim : Wiley-VCH, 2021) Ta, Huy Q.; Mendes, Rafael G.; Liu, Yu; Yang, Xiaoqin; Luo, Jingping; Bachmatiuk, Alicja; Gemming, Thomas; Zeng, Mengqi; Fu, Lei; Liu, Lijun; Rümmeli, Mark H.
    In recent years, two-dimensional (2D) materials have attracted a lot of research interest as they exhibit several fascinating properties. However, outside of 2D materials derived from van der Waals layered bulk materials only a few other such materials are realized, and it remains difficult to confirm their 2D freestanding structure. Despite that, many metals are predicted to exist as 2D systems. In this review, the authors summarize the recent progress made in the synthesis and characterization of these 2D metals, so called metallenes, and their oxide forms, metallene oxides as free standing 2D structures formed in situ through the use of transmission electron microscopy (TEM) and scanning TEM (STEM) to synthesize these materials. Two primary approaches for forming freestanding monoatomic metallic membranes are identified. In the first, graphene pores as a means to suspend the metallene or metallene oxide and in the second, electron-beam sputtering for the selective etching of metal alloys or thick complex initial materials is employed to obtain freestanding single-atom-thick 2D metal. The data show a growing number of 2D metals/metallenes and 2D metal/ metallene oxides having been confirmed and point to a bright future for further discoveries of these 2D materials.
  • Item
    Nd─Nd Bond in Ih and D5h Cage Isomers of Nd2@C80 Stabilized by Electrophilic CF3 Addition
    (Weinheim : Wiley-VCH, 2023) Yang, Wei; Velkos, Georgios; Rosenkranz, Marco; Schiemenz, Sandra; Liu, Fupin; Popov, Alexey A.
    Synthesis of molecular compounds with metal–metal bonds between 4f elements is recognized as one of the fascinating milestones in lanthanide metallochemistry. The main focus of such studies is on heavy lanthanides due to the interest in their magnetism, while bonding between light lanthanides remains unexplored. In this work, the Nd─Nd bonding in Nd-dimetallofullerenes as a case study of metal–metal bonding between early lanthanides is demonstrated. Combined experimental and computational study proves that pristine Nd2@C80 has an open shell structure with a single electron occupying the Nd─Nd bonding orbital. Nd2@C80 is stabilized by a one-electron reduction and further by the electrophilic CF3 addition to [Nd2@C80]−. Single-crystal X-ray diffraction reveals the formation of two Nd2@C80(CF3) isomers with D5h-C80 and Ih-C80 carbon cages, both featuring a single-electron Nd─Nd bond with the length of 3.78–3.79 Å. The mutual influence of the exohedral CF3 group and endohedral metal dimer in determining the molecular structure of the adducts is analyzed. Unlike Tb or Dy analogs, which are strong single-molecule magnets with high blocking temperature of magnetization, the slow relaxation of magnetization in Nd2@Ih-C80(CF3) is detectable via out-of-phase magnetic susceptibility only below 3 K and in the presence of magnetic field.
  • Item
    Understanding adaptive capacity of smallholder African indigenous vegetable farmers to climate change in Kenya
    (Amsterdam [u.a.] : Elsevier, 2020) Chepkoech, Winifred; Mungai, Nancy W.; Stöber, Silke; Lotze-Campen, Hermann
    Understanding the adaptive capacity (AC) of farmers is crucial to planning effective adaptation. Action to promote farmers’ AC is required because climate change (CC) is resulting in unpredictable alterations in weather patterns. Based on the sustainable livelihoods framework (SLF), this study explored how access to natural, physical, financial, social and human capitals enhances the AC. Quantitative data from 269 African indigenous vegetable (AIV) farmers in three selected agro-climatic zones in Kenya were analysed. Four indicators in each capital were selected based on previous studies and judgments collected from an expert online ranking survey (n = 35). The Kruskal-Wallis H test and an independent sample t-test were used to test the independence of AC scores and access to the different resources. The findings showed that the majority of farmers (53%) had a moderate AC, while fewer (32%) and (15%) had low or high AC levels respectively. Disparities in adaptive capacity scores were recorded between respondents in terms of their age, marital status and location. Farmers had high access to social capital but low access to financial, natural and human capitals. Female farmers showed lower capacities in the areas of financial, human and natural resources, while their male counterparts had low access to some human and social capitals. Resilient interventions that target individuals with low adaptive capacities are required. © 2020 The Authors
  • Item
    Towards Green 3D-Microfabrication of Bio-MEMS Devices Using ADEX Dry Film Photoresists
    (Berlin ; Heidelberg : Springer, 2022) Roos, Michael M.; Winkler, Andreas; Nilsen, Madeleine; Menzel, Siegfried B.; Strehle, Steffen
    Current trends in miniaturized diagnostics indicate an increasing demand for large quantities of mobile devices for health monitoring and point-of-care diagnostics. This comes along with a need for rapid but preferably also green microfabrication. Dry film photoresists (DFPs) promise low-cost and greener microfabrication and can partly or fully replace conventional silicon-technologies being associated with high-energy demands and the intense use of toxic and climate-active chemicals. Due to their mechanical stability and superior film thickness homogeneity, DFPs outperform conventional spin-on photoresists, such as SU-8, especially when three-dimensional architectures are required for micro-analytical devices (e.g. microfluidics). In this study, we utilize the commercial epoxy-based DFP ADEX to demonstrate various application scenarios ranging from the direct modification of microcantilever beams via the assembly of microfluidic channels to lamination-free patterning of DFPs, which employs the DFP directly as a substrate material. Finally, kinked, bottom-up grown silicon nanowires were integrated in this manner as prospective ion-sensitive field-effect transistors in a bio-probe architecture directly on ADEX substrates. Hence, we have developed the required set of microfabrication protocols for such an assembly comprising metal thin film deposition, direct burn-in of lithography alignment markers, and polymer patterning on top of the DFP.
  • Item
    Experimental evaluation and application of genetic programming to develop predictive correlations for hydrochar higher heating value and yield to optimize the energy content
    (Amsterdam [u.a.] : Elsevier, 2022) Marzban, Nader; Libra, Judy A.; Hosseini, Seyyed Hossein; Fischer, Marcus G.; Rotter, Vera Susanne
    The hydrothermal carbonization (HTC) process has been found to consistently improve biomass fuel characteristics by raising the higher heating value (HHV) of the hydrochar as process severity is increased. However, this is usually associated with a decrease in the solid yield (SY) of hydrochar, making it difficult to determine the optimal operating conditions to obtain the highest energy yield (EY), which combines the two parameters. In this study, a graph-based genetic programming (GP) method was used for developing correlations to predict HHV, SY, and EY for hydrochars based on published values from 42 biomasses and a broad range of HTC experimental systems and operating conditions, i.e., 5 ≤ holding time (min) ≤ 2208, 120 ≤ temperature (°C) ≤ 300, and 0. 0096 ≤ biomass to water ratio ≤ 0.5. In addition, experiments were carried out with 5 pomaces at 4 temperatures and two reactor scales, 1 L and 18.75 L. The correlations were evaluated using this experimental data set in order to estimate prediction errors in similar experimental systems. The use of the correlations to predict HTC conditions to achieve the maximum EY is demonstrated for three common feedstocks, wheat straw, sewage sludge, and a fruit pomace. The prediction was confirmed experimentally with pomace at the optimized HTC conditions; we observed 6.9 % error between the measured and predicted EY %. The results show that the correlations can be used to predict the optimal operating conditions to produce hydrochar with the desired fuel characteristics with a minimum of actual HTC runs.
  • Item
    Dynamics of rural livelihoods and rainfall variability in Northern Ethiopian Highlands
    (Amsterdam [u.a.] : Elsevier, 2019) Adamseged, Muluken E.; Frija, Aymen; Thiel, Andreas
    [No abstract available]