Search Results

Now showing 1 - 2 of 2
  • Item
    Impact of cold atmospheric pressure plasma processing on storage of blueberries
    (Oxford [u.a.] : Wiley-Blackwell, 2020) Pathak, Namrata; Grossi Bovi, Graziele; Limnaios, Athanasios; Fröhling, Antje; Brincat, Jean-Pierre; Taoukis, Petros; Valdramidis, Vasilis P.; Schlüter, Oliver
    The current study aimed at investigating the impact of nitrogen (N)-generated cold atmospheric pressure plasma (CAPP) treatment on blueberries focusing on the overall impact on berry quality and microbial load along a storage period of 10 days. Blueberries were treated for 0 (control), 5, and 10 min. Assessment of fruit quality (°Bx, ascorbic acid, anthocyanins, titratable acidity, elasticity, and color parameters) and microbial analysis was performed. Results showed that CAPP treatment was more effective in inhibiting bacterial growth than fungal growth and during the subsequent storage, the quality parameters did not differ significantly from the control, under the same conditions. The study supports N-generated CAPP as a disinfection technique to reduce microbial load in blueberries without significantly impacting most quality parameters. Practical applications: Over the last decades, foodborne illness outbreaks around the world have been associated with berries. For that reason, due to the increasing consumption of berries it is paramount to study technologies that can eliminate pathogens responsible for such outbreaks. Cold atmospheric pressure plasma (CAPP) can be a promising technology to be used as an alternative to traditional decontamination methods of food. In this context, this study explored the effect and efficiency of this novel technology on reduction of native microflora and its impact on the physical and chemical properties of blueberries treated by nitrogen (N)-generated CAPP with subsequent storage of 10 days. Results of this work confirmed that such technology has high potential application for decontamination of berries without significantly impacting most quality parameters and thereby can be a potential technology for industrial applications. © 2020 The Authors. Journal of Food Processing and Preservation published by Wiley Periodicals LLC.
  • Item
    Social media reveals consistently disproportionate tourism pressure on a threatened marine vertebrate
    (Oxford [u.a.] : Wiley-Blackwell, 2020) Papafitsoros, K.; Panagopoulou, A.; Schofield, G.
    Establishing how wildlife viewing pressure is distributed across individual animals within a population can inform the management of this activity, and ensure targeted individuals or groups are sufficiently protected. Here, we used social media data to quantify whether tourism pressure varies in a loggerhead sea turtle Caretta caretta population and elucidate the potential implications. Laganas Bay (Zakynthos, Greece) supports both breeding (migratory, and hence transient) and foraging (resident) turtles, with turtle viewing representing a major component of the tourism industry. Social media entries spanning two seasons (April to November, 2018 and 2019) were evaluated, and turtles were identified via photo-identification. For the 2 years, 1684 and 2105 entries of 139 and 122 unique turtles were obtained from viewings, respectively (boats and underwater combined). However, while residents represented less than one-third of uniquely identified turtles, they represented 81.9 and 87.9% of all entries. Even when the seasonal breeding population was present (May to July), residents represented more than 60% of entries. Notably, the same small number of residents (<10), mostly males, were consistently viewed in both years; however, different individuals were targeted by boats versus underwater. Thus, turtles appear to remain in the area despite high viewing intensity, possibly indicating low disturbance. However, photo-identification records revealed a high risk of propeller and boat strike to residents (30%) leading to trauma and mortality. To reduce this threat, we recommend the compulsory use of propeller guards for all boats, compliance with speed regulations and the creation of temporary ‘refuge’ zones for resident animals at viewing hotspots, with these suggestions likely being relevant for other wildlife with similar population dynamics. In conclusion, social media represents a useful tool for monitoring individuals at a population scale, evaluating the pressure under which they are placed, and providing sufficient data to refine wildlife viewing guidelines and/or zoning. © 2020 The Authors. Animal Conservation published by John Wiley & Sons Ltd on behalf of Zoological Society of London