Search Results

Now showing 1 - 2 of 2
  • Item
    Stability of hepatitis E virus at high hydrostatic pressure processing
    (Amsterdam : Elsevier, 2021) Johne, R.; Wolff, A.; Gadicherla, A.K.; Filter, M.; Schlüter, O.
    Hepatitis E virus (HEV) is the causative agent of acute and chronic hepatitis in humans. The zoonotic HEV genotype 3 is the main genotype in Europe. The foodborne transmission via consumption of meat and meat products prepared from infected pigs or wild boars is considered the major transmission route of this genotype. High hydrostatic pressure processing (HPP) is a technique, which can be used for inactivation of pathogens in food. Here, preparations of a cell culture-adapted HEV genotype 3 strain in phosphate-buffered saline (PBS) were subjected to HPP and the remaining infectivity was titrated in cell culture by counting fluorescent foci of replicating virus. A gradual decrease in infectivity was found by application of 100 to 600 MPa for 2 min. At 20 °C, infectivity reduction of 0.5 log10 at 200 MPa and 1 log10 at 400 MPa were observed. Slightly higher infectivity reduction of 1 log10 at 200 MPa and 2 log10 at 400 MPa were found by application of the pressure at 4 °C. At both temperatures, the virus was nearly completely inactivated (>3.5 log10 infectivity decrease) at 600 MPa; however, low amounts of remaining infectious virus were observed in one of three replicates in both cases. Transmission electron microscopy showed disassembled and distorted particles in the preparations treated with 600 MPa. Time-course experiments at 400 MPa showed a continuous decline of infectivity from 30 s to 10 min, leading to a 2 log10 infectivity decrease at 20 °C and to a 2.5 log10 infectivity decrease at 4 °C for a 10 min pressure application each. Predictive models for inactivation of HEV by HPP were generated on the basis of the generated data. The results show that HPP treatment can reduce HEV infectivity, which is mainly dependent on pressure height and duration of the HPP treatment. Compared to other viruses, HEV appears to be relatively stable against HPP and high pressure/long time combinations have to be applied for significant reduction of infectivity.
  • Item
    Cold atmospheric pressure plasma and low energy electron beam as alternative nonthermal decontamination technologies for dry food surfaces: A review
    (Amsterdam [u.a.] : Elsevier Science, 2018) Hertwig, Christian; Meneses, Nicolas; Mathys, Alexander
    Background: Dry food products are often highly contaminated, and dry stress-resistant microorganisms, such as certain types of Salmonella and bacterial spores, can be still viable and multiply if the product is incorporated into high moisture food products or rehydrated. Traditional technologies for the decontamination of these products have certain limitations and drawbacks, such as alterations of product quality, environmental impacts, carcinogenic potential and/or lower consumer acceptance. Cold atmospheric pressure plasma (CAPP) and low energy electron beam (LEEB) are two promising innovative technologies for microbial inactivation on dry food surfaces, which have shown potential to solve these certain limitations. Scope and approach: This review critically summarizes recent studies on the decontamination of dry food surfaces by CAPP and LEEB. Furthermore, proposed inactivation mechanisms, product-process interactions, current limitations and upscaling potential, as well as future trends and research needs for both emerging technologies, are discussed. Key findings and conclusions: CAPP and LEEB are nonthermal technologies with a high potential for the gentle decontamination of dry food surfaces. Both technologies have similarities in their inactivation mechanisms. Due to the limited penetration depth of both technologies, product-process interactions can be minimized by maintaining product quality. A first demonstrator with Technology Readiness Level (TRL) 7 for LEEB has already been introduced into the food industry for the decontamination of herbs and spices. Compared with LEEB, CAPP is at the advanced development stage with TRL 5, for which further work is essential to design systems that are scalable to industrial requirements. © 2018 The Authors