Search Results

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Item

Linear and nonlinear absorption of titanium dioxide films produced by plasma ion-assisted electron beam evaporation: Modeling and experiments

2019, Stenzel, Olaf, Wilbrandt, Steffen, Mühlig, Christian, Schröder, Sven

Titanium dioxide films were prepared by plasma ion-assisted electron beam evaporation. Linear optical properties were investigated in terms of spectrophotometry using the beta-distributed oscillator (ss_do) model as a parametrized dispersion law. The nonlinear two-photon absorption coecient of titanium dioxide was determined by means of the laser-induced deflection technique at a wavelength of 800 nm. The obtained values of (2-5) x 10-11 cm/W were consistent with published experimental values for rutile as well as for simulations performed in the frames of the ss_do and Sheik-Bahae models. © 2020 by the authors.

Loading...
Thumbnail Image
Item

Comparative Analysis of Raman Signal Amplifying Effectiveness of Silver Nanostructures with Different Morphology

2022, Yakimchuk, Dzmitry V., Khubezhov, Soslan A., Prigodich, Uladzislau V., Tishkevich, Daria I., Trukhanov, Sergei V., Trukhanov, Alex V., Sivakov, Vladimir, Kaniukov, Egor Y.

To increase the attractiveness of the practical application of molecular sensing methods, the experimental search for the optimal shape of silver nanostructures allowing to increase the Raman cross section by several orders of magnitude is of great interest. This paper presents a detailed study of spatially separated plasmon-active silver nanostructures grown in SiO2/Si template pores with crystallite, dendrite, and “sunflower-like” nanostructures shapes. Nile blue and 2-mercaptobenzothiazole were chosen as the model analytes for comparative evaluation of the Raman signal amplification efficiency using these structures. It was discussed the features of the structures for the enhancement of Raman intensity. Finally, we showed that silver crystals, dendrites, and “sunflower-like” nanostructures in SiO2/Si template could be used as the relevant materials for Raman signal amplification, but with different efficiency.