Search Results

Now showing 1 - 10 of 23
Loading...
Thumbnail Image
Item

Shape-Memory Metallopolymers Based on Two Orthogonal Metal–Ligand Interactions

2021, Meurer, Josefine, Hniopek, Julian, Bätz, Thomas, Zechel, Stefan, Enke, Marcel, Vitz, Jürgen, Schmitt, Michael, Popp, Jürgen, Hager, Martin D., Schubert, Ulrich S.

A new shape-memory polymer is presented, in which both the stable phase as well as the switching unit consist of two different metal complexes. Suitable metal ions, which simultaneously form labile complexes with histidine and stable ones with terpyridine ligands, are identified via isothermal titration calorimetry (ITC) measurements. Different copolymers are synthesized, which contain butyl methacrylate as the main monomer and the metal-binding ligands in the side chains. Zn(TFMS)2 and NiCl2 are utilized for the dual crosslinking, resulting in the formation of metallopolymer networks. The switching temperature can simply be tuned by changing the composition as well as by the choice of the metal ion. Strain fixity rates (about 99%) and very high strain recovery rates (up to 95%) are achieved and the mechanism is revealed using different techniques such as Raman spectroscopy. © 2021 The Authors. Advanced Materials published by Wiley-VCH GmbH

Loading...
Thumbnail Image
Item

Nanoparticles Can Wrap Epithelial Cell Membranes and Relocate Them Across the Epithelial Cell Layer

2018-7-24, Urbančič, Iztok, Garvas, Maja, Kokot, Boštjan, Majaron, Hana, Umek, Polona, Cassidy, Hilary, Škarabot, Miha, Schneider, Falk, Galiani, Silvia, Arsov, Zoran, Koklic, Tilen, Matallanas, David, Čeh, Miran, Muševič, Igor, Eggeling, Christian, Štrancar, Janez

Although the link between the inhalation of nanoparticles and cardiovascular disease is well established, the causal pathway between nanoparticle exposure and increased activity of blood coagulation factors remains unexplained. To initiate coagulation tissue factor bearing epithelial cell membranes should be exposed to blood, on the other side of the less than a micrometre thin air-blood barrier. For the inhaled nanoparticles to promote coagulation, they need to bind lung epithelial-cell membrane parts and relocate them into the blood. To assess this hypothesis, we use advanced microscopy and spectroscopy techniques to show that the nanoparticles wrap themselves with epithelial-cell membranes, leading to the membrane’s disruption. The membrane-wrapped nanoparticles are then observed to freely diffuse across the damaged epithelial cell layer relocating epithelial cell membrane parts over the epithelial layer. Proteomic analysis of the protein content in the nanoparticles wraps/corona finally reveals the presence of the coagulation-initiating factors, supporting the proposed causal link between the inhalation of nanoparticles and cardiovascular disease.

Loading...
Thumbnail Image
Item

Quinoline Photobasicity: Investigation within Water-Soluble Light-Responsive Copolymers

2021, Sittig, Maria, Tom, Jessica C., Elter, Johanna K., Schacher, Felix H., Dietzek, Benjamin

Quinoline photobases exhibit a distinctly higher pKa in their electronically excited state than in the ground state, thereby enabling light-controlled proton transfer reactions, for example, in molecular catalysis. The absorption of UV light translates to a pKa jump of approximately 10 units, as established for small-molecule photobases. This contribution presents the first synthesis of quinoline-based polymeric photobases prepared by reversible addition-fragmentation chain-transfer (RAFT) polymerization. The integration of quinolines as photobase chromophores within copolymers offers new possibilities for light-triggered proton transfer in nanostructured materials, that is, in nanoparticles, at surfaces, membranes and interfaces. To exploit the light-triggered reactivity of photobases within such materials, we first investigated how the ground- and excited-state properties of the quinoline unit changes upon polymer integration. To address this matter, we combined absorption and emission spectroscopy with time-resolved transient-absorption studies to reveal photoinduced proton-transfer dynamics in various solvents. The results yield important insights into the thermodynamic and kinetic properties of these polymeric quinoline photobases. © 2020 The Authors. Chemistry - A European Journal published by Wiley-VCH GmbH

Loading...
Thumbnail Image
Item

Non-invasive prospection techniques and direct push sensing as high-resolution validation tools in wetland geoarchaeology – Artificial water supply at a Carolingian canal in South Germany?

2020, Rabiger-Völlmer, Johannes, Schmidt, Johannes, Linzen, Sven, Schneider, Michael, Werban, Ulrike, Dietrich, Peter, Wilken, Dennis, Wunderlich, Tina, Fediuk, Annika, Berg, Stefanie, Werther, Lukas, Zielhofer, Christoph

The prospection of (geo-)archaeological sites yield important knowledge about the concept and the utilisation of pre-historical and historical infrastructure. The satisfactory conduction of classical prospection methods like archaeological excavations or geoarchaeological vibra-coring might be challenging in the case of large sites or difficult underground conditions. This is particularly problematic in wetlands featuring a high groundwater table and high compaction rates of organic layers. In this study, we provide an alternative and non- to minimal-invasive exploration approach to discover hydro-engineering structures for artificial water supply in the surrounding of a Carolingian summit canal in South Germany. The Early Medieval Fossa Carolina was intended 792/793 CE to bridge the Central European watershed between Rhine-Main and Danube catchments. As the canal was constructed as a summit canal, an artificial water supply at the highest levels seemed very likely or even obligatory. In order to explore these obligatory hydro-engineering features, we use a wide range of on-site and off-site tools in a spatial hierarchical way. Our approach includes the large-scale SQUID magnetic survey and the sighting of historical maps. Furthermore, we integrate high-resolution direct push colour logs, and subsequent vibra-coring for small-scale stratigraphical verification and sedimentological analyses. The SQUID magnetic survey and related depth models discover two pronounced linear anomalies that might represent potential artificial water inlets in the North-Eastern and Northern Sections of the canal. I) In the North-Eastern Section, direct push colour logs, vibra-coring and 14C dating provide no evidence for a Carolingian hydro-engineering feature but reveal a natural lenticular structure of Early Holocene age. II) The linear magnetic anomaly in the Northern Section can be excluded with high probability as a hydro-engineering structure as well. Here, direct push colour logs, vibra-coring, 14C dating and the comparison with a historic map reveal evidence for a historic gravel road. Thus, we have nicely verified the magnetic information but have no prove for an artificial Carolingian water inlet from the Swabian Rezat River that contradicts with assumptions of former studies. © 2020 The Authors

Loading...
Thumbnail Image
Item

Yield—not only Lifetime—of the Photoinduced Charge-Separated State in Iridium Complex–Polyoxometalate Dyads Impact Their Hydrogen Evolution Reactivity

2020, Luo, Yusen, Maloul, Salam, Schönweiz, Stefanie, Wächtler, Maria, Streb, Carsten, Dietzek, Benjamin

Covalently linked photosensitizer–polyoxometalate (PS-POM) dyads are promising molecular systems for light-induced energy conversion processes, such as “solar” hydrogen generation. To date, very little is known of their fundamental photophysical properties which affect the catalytic reactivity and stability of the systems. PS-POM dyads often feature short-lived photoinduced charge-separated states, and the lifetimes of these states are considered crucial for the function of PS-POM dyads in molecular photocatalysis. Hence, strategies have been developed to extend the lifetimes of the photoinduced charge-separated states, either by tuning the PS photophysics or by tuning the POM redox properties. Recently, some of us reported PS-POM dyads based on cyclometalated IrIII complexes covalently linked to Anderson-type polyoxometalate. Distinct hydrogen evolution reactivity (HER) of the dyads was observed, which was tuned by varying the central metal ion M of the POMM (M=Mn3+, Co3+, Fe3+). In this manuscript, the photoinduced electron-transfer processes in the three Ir-POMM dyads are investigated to rationalize the underlying reasons for the differences in HER activity observed. We report that upon excitation of the IrIII complex, ultrafast (sub-ps) charge separation occurs, leading to different amounts of the charge-separated states (Ir.+-POMM.−) generated in the different dyads. However, in all dyads studied, the resulting Ir.+-POMM.− species are short-lived (sub-ns) when compared to reference electron acceptors (e.g. porphyrins or fullerenes) reported in the literature. The reductive quenching of Ir.+-POMM.− by a sacrificial donor, triethyl amine (1 m), to generate the intermediate Ir-POMM.− is estimated to be very efficient (70–80 %) for all dyads studied. Based on this analyses, we conclude that the yield instead of the lifetime of the Ir.+-POMM.− charge-separated state determines the catalytic capacity of the dyads investigated. This new feature in the PS-POM photophysics could lead to new design criteria for the development of novel PS-POM dyads. © 2020 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

Loading...
Thumbnail Image
Item

Photophysics of Anionic Bis(4H-imidazolato)CuI Complexes

2022, Seidler, Bianca, Tran, Jens H., Hniopek, Julian, Traber, Philipp, Görls, Helmar, Gräfe, Stefanie, Schmitt, Michael, Popp, Jürgen, Schulz, Martin, Dietzek‐Ivanšić, Benjamin

In this paper, the photophysical behavior of four panchromatically absorbing, homoleptic bis(4H-imidazolato)CuI complexes, with a systematic variation in the electron-withdrawing properties of the imidazolate ligand, were studied by wavelength-dependent time-resolved femtosecond transient absorption spectroscopy. Excitation at 400, 480, and 630 nm populates metal-to-ligand charge transfer, intraligand charge transfer, and mixed-character singlet states. The pump wavelength-dependent transient absorption data were analyzed by a recently established 2D correlation approach. Data analysis revealed that all excitation conditions yield similar excited-state dynamics. Key to the excited-state relaxation is fast, sub-picosecond pseudo-Jahn-Teller distortion, which is accompanied by the relocalization of electron density onto a single ligand from the initially delocalized state at Franck-Condon geometry. Subsequent intersystem crossing to the triplet manifold is followed by a sub-100 ps decay to the ground state. The fast, nonradiative decay is rationalized by the low triplet-state energy as found by DFT calculations, which suggest perspective treatment at the strong coupling limit of the energy gap law.

Loading...
Thumbnail Image
Item

Rapid Colorimetric Detection of Pseudomonas aeruginosa in Clinical Isolates Using a Magnetic Nanoparticle Biosensor

2019, Alhogail, Sahar, Suaifan, Ghadeer A.R.Y, Bikker, Floris J., Kaman, Wendy E., Weber, Karina, Cialla-May, Dana, Popp, Jürgen, Zourob, Mohammed M.

A rapid, sensitive, and specific colorimetric biosensor based on the use of magnetic nanoparticles (MNPs) was designed for the detection of Pseudomonas aeruginosa in clinical samples. The biosensing platform was based on the measurement of P. aeruginosa proteolytic activity using a specific protease substrate. At the N-terminus, this substrate was covalently bound to MNPs and was linked to a gold sensor surface via cystine at the C-terminus of the substrates. The golden sensor appears black to naked eyes because of the coverage of the MNPs. However, upon proteolysis, the cleaved peptide–MNP moieties will be attracted by an external magnet, revealing the golden color of the sensor surface, which can be observed by the naked eye. In vitro, the biosensor was able to detect specifically and quantitatively the presence of P. aeruginosa with a detection limit of 102 cfu/mL in less than 1 min. The colorimetric biosensor was used to test its ability to detect in situ P. aeruginosa in clinical isolates from patients. This biochip is anticipated to be useful as a rapid point-of-care device for the diagnosis of P. aeruginosa-related infections.

Loading...
Thumbnail Image
Item

Excited-State Dynamics in Borylated Arylisoquinoline Complexes in Solution and in cellulo

2023, Yang, Tingxiang, Valavalkar, Abha, Romero‐Arenas, Antonio, Dasgupta, Anindita, Then, Patrick, Chettri, Avinash, Eggeling, Christian, Ros, Abel, Pischel, Uwe, Dietzek‐Ivanšić, Benjamin

Two four-coordinate organoboron N,C-chelate complexes with different functional terminals on the PEG chains are studied with respect to their photophysical properties within human MCF-7 cells. Their excited-state properties are characterized by time-resolved pump-probe spectroscopy and fluorescence lifetime microscopy. The excited-state relaxation dynamics of the two complexes are similar when studied in DMSO. Aggregation of the complexes with the carboxylate terminal group is observed in water. When studying the light-driven excited-state dynamics of both complexes in cellulo, i. e., after being taken up into human MCF-7 cells, both complexes show different features depending on the nature of the anchoring PEG chains. The lifetime of a characteristic intramolecular charge-transfer state is significantly shorter when studied in cellulo (360±170 ps) as compared to in DMSO (∼960 ps) at 600 nm for the complexes with an amino group. However, the kinetics of the complexes with the carboxylate group are in line with those recorded in DMSO. On the other hand, the lifetimes of the fluorescent state are almost identical for both complexes in cellulo. These findings underline the importance to evaluate the excited-state properties of fluorophores in a complex biological environment in order to fully account for intra- and intermolecular effects governing the light-induced processes in functional dyes.

Loading...
Thumbnail Image
Item

Giant persistent photoconductivity in monolayer MoS2 field-effect transistors

2021, George, A., Fistul, M.V., Gruenewald, M., Kaiser, D., Lehnert, T., Mupparapu, R., Neumann, C., Hübner, U., Schaal, M., Masurkar, N., Arava, L.M.R., Staude, I., Kaiser, U., Fritz, T., Turchanin, A.

Monolayer transition metal dichalcogenides (TMD) have numerous potential applications in ultrathin electronics and photonics. The exposure of TMD-based devices to light generates photo-carriers resulting in an enhanced conductivity, which can be effectively used, e.g., in photodetectors. If the photo-enhanced conductivity persists after removal of the irradiation, the effect is known as persistent photoconductivity (PPC). Here we show that ultraviolet light (λ = 365 nm) exposure induces an extremely long-living giant PPC (GPPC) in monolayer MoS2 (ML-MoS2) field-effect transistors (FET) with a time constant of ~30 days. Furthermore, this effect leads to a large enhancement of the conductivity up to a factor of 107. In contrast to previous studies in which the origin of the PPC was attributed to extrinsic reasons such as trapped charges in the substrate or adsorbates, we show that the GPPC arises mainly from the intrinsic properties of ML-MoS2 such as lattice defects that induce a large number of localized states in the forbidden gap. This finding is supported by a detailed experimental and theoretical study of the electric transport in TMD based FETs as well as by characterization of ML-MoS2 with scanning tunneling spectroscopy, high-resolution transmission electron microscopy, and photoluminescence measurements. The obtained results provide a basis for the defect-based engineering of the electronic and optical properties of TMDs for device applications.

Loading...
Thumbnail Image
Item

Comparison of novel semi-airborne electromagnetic data with multi-scale geophysical, petrophysical and geological data from Schleiz, Germany

2020, Steuer, Annika, Smirnova, Maria, Becken, Michael, Schiffler, Markus, Günther, Thomas, Rochlitz, Raphael, Yogeshwar, Pritam, Mörbe, Wiebke, Siemon, Bernhard, Costabel, Stephan, Preugschat, Benedikt, Ibs-von Seht, Malte, Zampa, Luigi Sante, Müller, Franz

In the framework of the Deep Electromagnetic Sounding for Mineral EXploration (DESMEX) project, we carried out multiple geophysical surveys from regional to local scales in a former mining area in the state of Thuringia, Germany. We prove the applicability of newly developed semi-airborne electromagnetic (EM) systems for mineral exploration by cross-validating inversion results with those of established airborne and ground-based investigation techniques. In addition, supporting petrophysical and geological information to our geophysical measurements allowed the synthesis of all datasets over multiple scales. An initial regional-scale reconnaissance survey was performed with BGR's standard helicopter-borne geophysical system deployed with frequency-domain electromagnetic (HEM), magnetic and radiometric sensors. In addition to geological considerations, the HEM results served as base-line information for the selection of an optimal location for the intermediate-scale semi-airborne EM experiments. The semi-airborne surveys utilized long grounded transmitters and two independent airborne receiver instruments: induction coil magnetometers and SQUID sensors. Due to the limited investigation depth of the HEM method, local-scale electrical resistivity tomography (ERT) and long-offset transient electromagnetic (LOTEM) measurements were carried out on a reference profile, enabling the validation of inversion results at greater depths. The comparison of all inversion results provided a consistent overall resistivity distribution. It further confirmed that both semi-airborne receiver instruments achieve the bandwidth and sensitivity required for the investigation of the resistivity structure down to 1 km depth and therewith the detection of deeply seated earth resources. A 3D geological model, lithological and geophysical borehole logs as well as petrophysical investigations were integrated to interpret of the geophysical results. Distinct highly-conductive anomalies with resistivities of less than 10 Om were identified as alum shales over all scales. Apart from that, the petrophysical investigations exhibited that correlating geophysical and geological information using only one single parameter, such as the electrical resistivity, is hardly possible. Therefore, we developed a first approach based on clustering methods and self-organizing maps (SOMs) that allowed us to assign geological units at the surface to a given combination of geophysical and petrophysical parameters, obtained on different scales. © 2020 The Authors