Search Results

Now showing 1 - 5 of 5
  • Item
    Photophysics of Anionic Bis(4H-imidazolato)CuI Complexes
    (Weinheim : Wiley-VCH, 2022) Seidler, Bianca; Tran, Jens H.; Hniopek, Julian; Traber, Philipp; Görls, Helmar; Gräfe, Stefanie; Schmitt, Michael; Popp, Jürgen; Schulz, Martin; Dietzek‐Ivanšić, Benjamin
    In this paper, the photophysical behavior of four panchromatically absorbing, homoleptic bis(4H-imidazolato)CuI complexes, with a systematic variation in the electron-withdrawing properties of the imidazolate ligand, were studied by wavelength-dependent time-resolved femtosecond transient absorption spectroscopy. Excitation at 400, 480, and 630 nm populates metal-to-ligand charge transfer, intraligand charge transfer, and mixed-character singlet states. The pump wavelength-dependent transient absorption data were analyzed by a recently established 2D correlation approach. Data analysis revealed that all excitation conditions yield similar excited-state dynamics. Key to the excited-state relaxation is fast, sub-picosecond pseudo-Jahn-Teller distortion, which is accompanied by the relocalization of electron density onto a single ligand from the initially delocalized state at Franck-Condon geometry. Subsequent intersystem crossing to the triplet manifold is followed by a sub-100 ps decay to the ground state. The fast, nonradiative decay is rationalized by the low triplet-state energy as found by DFT calculations, which suggest perspective treatment at the strong coupling limit of the energy gap law.
  • Item
    Covalent Linkage of BODIPY-Photosensitizers to Anderson-Type Polyoxometalates Using CLICK Chemistry
    (Weinheim : Wiley-VCH, 2021) Cetindere, Seda; Clausing, Simon T.; Anjass, Montaha; Luo, Yusen; Kupfer, Stephan; Dietzek, Benjamin; Streb, Carsten
    The covalent attachment of molecular photosensitizers (PS) to polyoxometalates (POMs) opens new pathways to PS-POM dyads for light-driven charge-transfer and charge-storage. Here, we report a synthetic route for the covalent linkage of BODIPY-dyes to Anderson-type polyoxomolybdates by using CLICK chemistry (i. e. copper-catalyzed azide-alkyne cycloaddition, CuAAC). Photophysical properties of the dyad were investigated by combined experimental and theoretical methods and highlight the role of both sub-components for the charge-separation properties. The study demonstrates how CLICK chemistry can be used for the versatile linkage of organic functional units to molecular metal oxide clusters. © 2021 The Authors. Chemistry - A European Journal published by Wiley-VCH GmbH
  • Item
    Optical Anisotropy and Momentum-Dependent Excitons in Dibenzopentacene Single Crystals
    (Washington, DC : ACS Publications, 2022) Graf, Lukas; Liu, Fupin; Naumann, Marco; Roth, Friedrich; Debnath, Bipasha; Büchner, Bernd; Krupskaya, Yulia; Popov, Alexey A.; Knupfer, Martin
    High-quality single crystals of the organic semiconductor (1,2;8,9)-dibenzopentacene were grown via physical vapor transport. The crystal structure─unknown before─was determined by single-crystal X-ray diffraction; polarization-dependent optical absorption measurements display a large anisotropy in the ac plane of the crystals. The overall Davydov splitting is ∼110 meV, which is slightly lower than that in the close relative pentacene (120 meV). Momentum-dependent electron energy-loss spectroscopy measurements show a clear exciton dispersion of the Davydov components. An analysis of the dispersion using a simple 1D model indicates smaller electron- and hole-transfer integrals in dibenzopentacene as compared to pentacene. The spectral weight distribution of the excitation spectra is strongly momentum-dependent and demonstrates a strong momentum-dependent admixture of Frenkel excitons, charge-transfer excitons, and vibrational modes.
  • Item
    Short Excited-State Lifetimes Mediate Charge-Recombination Losses in Organic Solar Cell Blends with Low Charge-Transfer Driving Force
    (Weinheim : Wiley-VCH, 2021) Shivhare, Rishi; Moore, Gareth John; Hofacker, Andreas; Hutsch, Sebastian; Zhong, Yufei; Hambsch, Mike; Erdmann, Tim; Kiriy, Anton; Mannsfeld, Stefan C.B.; Ortmann, Frank; Banerji, Natalie
    A blend of a low-optical-gap diketopyrrolopyrrole polymer and a fullerene derivative, with near-zero driving force for electron transfer, is investigated. Using femtosecond transient absorption and electroabsorption spectroscopy, the charge transfer (CT) and recombination dynamics as well as the early-time transport are quantified. Electron transfer is ultrafast, consistent with a Marcus-Levich-Jortner description. However, significant charge recombination and unusually short excited (S1 ) and CT state lifetimes (≈14 ps) are observed. At low S1 -CT offset, a short S1 lifetime mediates charge recombination because: i) back-transfer from the CT to the S1 state followed by S1 recombination occurs and ii) additional S1 -CT hybridization decreases the CT lifetime. Both effects are confirmed by density functional theory calculations. In addition, relatively slow (tens of picoseconds) dissociation of charges from the CT state is observed, due to low local charge mobility. Simulations using a four-state kinetic model entailing the effects of energetic disorder reveal that the free charge yield can be increased from the observed 12% to 60% by increasing the S1 and CT lifetimes to 150 ps. Alternatively, decreasing the interfacial CT state disorder while increasing bulk disorder of free charges enhances the yield to 65% in spite of the short lifetimes.
  • Item
    Yield—not only Lifetime—of the Photoinduced Charge-Separated State in Iridium Complex–Polyoxometalate Dyads Impact Their Hydrogen Evolution Reactivity
    (Weinheim : Wiley-VCH, 2020) Luo, Yusen; Maloul, Salam; Schönweiz, Stefanie; Wächtler, Maria; Streb, Carsten; Dietzek, Benjamin
    Covalently linked photosensitizer–polyoxometalate (PS-POM) dyads are promising molecular systems for light-induced energy conversion processes, such as “solar” hydrogen generation. To date, very little is known of their fundamental photophysical properties which affect the catalytic reactivity and stability of the systems. PS-POM dyads often feature short-lived photoinduced charge-separated states, and the lifetimes of these states are considered crucial for the function of PS-POM dyads in molecular photocatalysis. Hence, strategies have been developed to extend the lifetimes of the photoinduced charge-separated states, either by tuning the PS photophysics or by tuning the POM redox properties. Recently, some of us reported PS-POM dyads based on cyclometalated IrIII complexes covalently linked to Anderson-type polyoxometalate. Distinct hydrogen evolution reactivity (HER) of the dyads was observed, which was tuned by varying the central metal ion M of the POMM (M=Mn3+, Co3+, Fe3+). In this manuscript, the photoinduced electron-transfer processes in the three Ir-POMM dyads are investigated to rationalize the underlying reasons for the differences in HER activity observed. We report that upon excitation of the IrIII complex, ultrafast (sub-ps) charge separation occurs, leading to different amounts of the charge-separated states (Ir.+-POMM.−) generated in the different dyads. However, in all dyads studied, the resulting Ir.+-POMM.− species are short-lived (sub-ns) when compared to reference electron acceptors (e.g. porphyrins or fullerenes) reported in the literature. The reductive quenching of Ir.+-POMM.− by a sacrificial donor, triethyl amine (1 m), to generate the intermediate Ir-POMM.− is estimated to be very efficient (70–80 %) for all dyads studied. Based on this analyses, we conclude that the yield instead of the lifetime of the Ir.+-POMM.− charge-separated state determines the catalytic capacity of the dyads investigated. This new feature in the PS-POM photophysics could lead to new design criteria for the development of novel PS-POM dyads. © 2020 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.