Search Results

Now showing 1 - 10 of 33
  • Item
    Remarkable Mechanochromism in Blends of a π-Conjugated Polymer P3TEOT: The Role of Conformational Transitions and Aggregation
    (Weinheim : Wiley-VCH, 2020) Zessin, Johanna; Schnepf, Max; Oertel, Ulrich; Beryozkina, Tetyana; König, Tobias A.F.; Fery, Andreas; Mertig, Michael; Kiriy, Anton
    A novel mechanism for well-pronounced mechanochromism in blends of a π-conjugated polymer based on reversible conformational transitions of a chromophore rather than caused by its aggregation state, is exemplified. Particularly, a strong stretching-induced bathochromic shift of the light absorption, or hypsochromic shift of the emission, is found in blends of the water-soluble poly(3-tri(ethylene glycol)) (P3TEOT) embedded into the matrix of thermoplastic polyvinyl alcohol. This counterintuitive phenomenon is explained in terms of the concentration dependency of the P3TEOT's aggregation state, which in turn results in different molecular conformations and optical properties. A molecular flexibility, provided by low glass transition temperature of P3TEOT, and the fact that P3TEOT adopts an intermediate, moderately planar conformation in the solid state, are responsible for the unusual complex mechanochromic behavior. © 2019 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
  • Item
    Lasing by Template-Assisted Self-Assembled Quantum Dots
    (Weinheim : Wiley-VCH, 2023) Aftenieva, Olha; Sudzius, Markas; Prudnikau, Anatol; Adnan, Mohammad; Sarkar, Swagato; Lesnyak, Vladimir; Leo, Karl; Fery, Andreas; König, Tobias A.F.
    Miniaturized laser sources with low threshold power are required for integrated photonic devices. Photostable core/shell nanocrystals are well suited as gain material and their laser properties can be exploited by direct patterning as distributed feedback (DFB) lasers. Here, the 2nd-order DFB resonators tuned to the photoluminescence wavelength of the QDs are used. Soft lithography based on template-assisted colloidal self-assembly enables pattern resolution in the subwavelength range. Combined with the directional Langmuir–Blodgett arrangement, control of the waveguide layer thickness is further achieved. It is shown that a lasing threshold of 5.5 mJ cm−2 is reached by a direct printing method, which can be further reduced by a factor of ten (0.6 mJ cm−2) at an optimal waveguide thickness. Moreover, it is discussed how one can adjust the DFB geometries to any working wavelength. This colloidal approach offers prospects for applications in bioimaging, biomedical sensing, anti-counterfeiting, or displays.
  • Item
    Colloidal Self-Assembly Concepts for Plasmonic Metasurfaces
    (Weinheim : Wiley-VCH, 2019) Mayer, Martin; Schnepf, Max J.; König, Tobias A.F.; Fery, Andreas
    Metallic nanostructures exhibit strong interactions with electromagnetic radiation, known as the localized surface plasmon resonance. In recent years, there is significant interest and growth in the area of coupled metallic nanostructures. In such assemblies, short- and long-range coupling effects can be tailored and emergent properties, e.g., metamaterial effects, can be realized. The term “plasmonic metasurfaces” is used for this novel class of assemblies deposited on planar surfaces. Herein, the focus is on plasmonic metasurfaces formed from colloidal particles. These are formed by self-assembly and can meet the demands of low-cost manufacturing of large-area, flexible, and ultrathin devices. The advances in high optical quality of the colloidal building blocks and methods for controlling their self-assembly on surfaces will lead to novel functional devices for dynamic light modulators, pulse sharpening, subwavelength imaging, sensing, and quantum devices. This progress report focuses on predicting optical properties of single colloidal building blocks and their assemblies, wet-chemical synthesis, and directed self-assembly of colloidal particles. The report concludes with a discussion of the perspectives toward expanding the colloidal plasmonic metasurfaces concept by integrating them with quantum emitters (gain materials) or mechanically responsive structures. © 2018 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
  • Item
    Plasmonic Properties of Colloidal Assemblies
    (Weinheim : Wiley-VCH, 2021) Rossner, Christian; König, Tobias A.F.; Fery, Andreas
    The assembly of metal nanoparticles into supracolloidal structures unlocks optical features, which can go beyond synergistic combinations of the properties of their primary building units. This is due to inter-particle plasmonic coupling effects, which give rise to emergent properties. The motivation for this progress report is twofold: First, it is described how simulation approaches can be used to predict and understand the optical properties of supracolloidal metal clusters. These simulations may form the basis for the rational design of plasmonic assembly architectures, based on the desired functional cluster properties, and they may also spark novel material designs. Second, selected scalable state-of-the-art preparative strategies based on synthetic polymers to guide the supracolloidal assembly are discussed. These routes also allow for equipping the assembly structures with adaptive properties, which in turn enables (inter-)active control over the cluster optical properties. © 2021 The Authors. Advanced Optical Materials published by Wiley-VCH GmbH
  • Item
    Exploiting Combinatorics to Investigate Plasmonic Properties in Heterogeneous Ag-Au Nanosphere Chain Assemblies
    (Weinheim : Wiley-VCH, 2021) Schletz, Daniel; Schultz, Johannes; Potapov, Pavel L.; Steiner, Anja Maria; Krehl, Jonas; König, Tobias A.F.; Mayer, Martin; Lubk, Axel; Fery, Andreas
    Chains of coupled metallic nanoparticles are of special interest for plasmonic applications because they can sustain highly dispersive plasmon bands, allowing strong ballistic plasmon wave transport. Whereas early studies focused on homogeneous particle chains exhibiting only one dominant band, heterogeneous assemblies consisting of different nanoparticle species came into the spotlight recently. Their increased configuration space principally allows engineering multiple bands, bandgaps, or topological states. Simultaneously, the challenge of the precise arrangement of nanoparticles, including their distances and geometric patterns, as well as the precise characterization of the plasmonics in these systems, persists. Here, the surface plasmon resonances in heterogeneous Ag-Au nanoparticle chains are reported. Wrinkled templates are used for directed self-assembly of monodisperse gold and silver nanospheres as chains, which allows assembling statistical combinations of more than 109 particles. To reveal the spatial and spectral distribution of the plasmonic response, state-of-the-art scanning transmission electron microscopy coupled with electron energy loss spectroscopy accompanied by boundary element simulations is used. A variety of modes in the heterogeneous chains are found, ranging from localized surface plasmon modes occurring in single gold or silver spheres, respectively, to modes that result from the hybridization of the single particles. This approach opens a novel avenue toward combinatorial studies of plasmonic properties in heterosystems. © 2021 The Authors. Advanced Optical Materials published by Wiley-VCH GmbH
  • Item
    Effects of (complementary) polyelectrolytes characteristics on composite calcium carbonate microparticles properties
    (Bucureşti : [Verlag nicht ermittelbar], 2017) Mic, Cristian Barbu; Mihai, Marcela; Varganici, Cristian Dragos; Schwarz, Simona; Scutaru, Dan; Simionescu, Bogdan C.
    This study follows the possibility to tune the thermal stability of some CaCO3/polymer composites by crystal growth from supersaturated solutions controlled by polymer structure or by using nonstoichiometric polyelectrolyte complexes (NPECs). As the ratio between the organic and inorganic parts in the composites controls the Ca2+/polymer network crosslinking density, the CaCO3/polymer weight ratio was kept constant at 50/1, varying the initial concentration of the polyanions solutions (0.05 or 0.06 wt.%), the NPECs molar ratio , n+/n- (0.2 or 0.4), or the inorganic precursors concentration (0.25 or 0.3 M). Poly(2-acrylamido-2-methylpropanesulfonic acid-co-acrylic acid) (PSA) and chondroitin-4-sulfate (CSA) were used as polyanions. Some NPEC dispersions, prepared with the same polyanions and poly(allylamine hydrochloride) (PAH), were also used for calcium carbonate crystallization. The characteristics of the prepared composites were investigated by scanning electron microscopy (SEM), flow particle image analysis (FPIA), particles charge density (CD), zeta-potential (ZP). The thermal stability of the composite particles was investigated as compared to bare CaCO3 microparticles prepared at the same initial inorganic concentrations.
  • Item
    Benzoyl side-chains push the open-circuit voltage of PCDTBT/PCBM solar cells beyond 1 V
    (Amsterdam [u.a.] : Elsevier Science, 2017) Lombeck, Florian; Müllers, Stefan; Komber, Hartmut; Menke, S. Matthew; Pearson, Andrew J.; Conaghan, Patrick J.; McNeill, Christopher R.; Friend, Richard H.; Sommer, Michael
    The synthesis, characterization and solar cell performance of PCDTBT and its highly soluble analogue hexyl-PCDTBT with cross-conjugated benzoyl moieties at the carbazole comonomer are presented. Through the use of both model reactions and time-controlled microwave-assisted Suzuki polycondensation, the base-induced cleavage of the benzoyl group from the polymer backbone has been successfully suppressed. Compared to the commonly used symmetrically branched alkyl motif, the benzoyl substituent lowers the energy levels of PCDTBT as well as the band gap, and consequently increases energy of the charge transfer state in blends with PC71BM. As a result, photovoltaic diodes with high-open circuit voltage of above 1 V are realized.
  • Item
    Nitrogen-Doped Carbon Nanotube/Polypropylene Composites with Negative Seebeck Coefficient
    (Basel : MDPI, 2020) Krause, Beate; Konidakis, Ioannis; Arjmand, Mohammad; Sundararaj, Uttandaraman; Fuge, Robert; Liebscher, Marco; Hampel, Silke; Klaus, Maxim; Serpetzoglou, Efthymis; Stratakis, Emmanuel; Pötschke, Petra
    This study describes the application of multi-walled carbon nanotubes that were nitrogen-doped during their synthesis (N-MWCNTs) in melt-mixed polypropylene (PP) composites. Different types of N-MWCNTs, synthesized using different methods, were used and compared. Four of the five MWCNT grades showed negative Seebeck coefficients (S), indicating n-type charge carrier behavior. All prepared composites (with a concentration between 2 and 7.5 wt% N-MWCNTs) also showed negative S values, which in most cases had a higher negative value than the corresponding nanotubes. The S values achieved were between 1.0 µV/K and −13.8 µV/K for the N-MWCNT buckypapers or powders and between −4.7 µV/K and −22.8 µV/K for the corresponding composites. With a higher content of N-MWCNTs, the increase in electrical conductivity led to increasing values of the power factor (PF) despite the unstable behavior of the Seebeck coefficient. The highest power factor was achieved with 4 wt% N-MWCNT, where a suitable combination of high electrical conductivity and acceptable Seebeck coefficient led to a PF value of 6.1 × 10−3 µW/(m·K2). First experiments have shown that transient absorption spectroscopy (TAS) is a useful tool to study the carrier transfer process in CNTs in composites and to correlate it with the Seebeck coefficient.
  • Item
    Screening of Different Carbon Nanotubes in Melt-Mixed Polymer Composites with Different Polymer Matrices for Their Thermoelectrical Properties
    (Basel : MDPI, 2019-12-7) Krause, Beate; Barbier, Carine; Levente, Juhasz; Klaus, Maxim; Pötschke, Petra
    The aim of this study is to reveal the influences of carbon nanotube (CNT) and polymer type as well as CNT content on electrical conductivity, Seebeck coefficient (S), and the resulting power factor (PF) and figure of merit (ZT). Different commercially available and laboratory made CNTs were used to prepare melt-mixed composites on a small scale. CNTs typically lead to p-type composites with positive S-values. This was found for the two types of multi-walled CNTs (MWCNT) whereby higher Seebeck coefficient in the corresponding buckypapers resulted in higher values also in the composites. Nitrogen doped MWCNTs resulted in negative S-values in the buckypapers as well as in the polymer composites. When using single-walled CNTs (SWCNTs) with a positive S-value in the buckypapers, positive (polypropylene (PP), polycarbonate (PC), poly (vinylidene fluoride) (PVDF), and poly(butylene terephthalate) (PBT)) or negative (polyamide 66 (PA66), polyamide 6 (PA6), partially aromatic polyamide (PARA), acrylonitrile butadiene styrene (ABS)) S-values were obtained depending on the matrix polymer and SWCNT type. The study shows that the direct production of n-type melt-mixed polymer composites from p-type commercial SWCNTs with relatively high Seebeck coefficients is possible. The highest Seebeck coefficients obtained in this study were 66.4 µV/K (PBT/7 wt % SWCNT Tuball) and −57.1 µV/K (ABS/0.5 wt % SWCNT Tuball) for p-and n-type composites, respectively. The highest power factor and ZT of 0.28 µW/m·K2 and 3.1 × 10−4, respectively, were achieved in PBT with 4 wt % SWCNT Tuball.
  • Item
    Understanding the Coupling Effect between Lignin and Polybutadiene Elastomer
    (Basel : MDPI, 2021) Hait, Sakrit; De, Debapriya; Ghosh, Prasenjit; Chanda, Jagannath; Mukhopadhyay, Rabindra; Dasgupta, Saikat; Sallat, Aladdin; Al Aiti, Muhannad; Stöckelhuber, Klaus Werner; Wießner, Sven; Heinrich, Gert; Das, Amit
    From an environmental and economic viewpoint, it is a win–win strategy to use materials obtained from renewable resources for the production of high-performance elastomer composites. Lignin, being a renewable biomass, was employed as a functional filler material to obtain an elastomer composite with a higher degree of mechanical performance. In the presence of a suitable coupling agent, an elevated temperature was preferred for the reactive mixing of lignin with polybutadiene rubber (BR). It is quite fascinating that the mechanical performance of this composite was comparable with carbon black-filled composites. The extraordinary reinforcing behavior of lignin in the BR matrix was understood by an available model of rubber reinforcement. In rubber composite preparation, the interfacial interaction between polybutadiene rubber and lignin in the presence of a coupling agent enabled the efficient dispersion of lignin into the rubber matrix, which is responsible for the excellent mechanical properties of the rubber composites. The rubber composites thus obtained may lead to the development of a sustainable and cost-effective end product with reliable performance. This novel approach could be implemented in other type of elastomeric materials, enabling a genuine pathway toward a sustainable globe.