Search Results

Now showing 1 - 10 of 10
  • Item
    On Tetrahedralisations Containing Knotted and Linked Line Segments
    (Amsterdam [u.a.] : Elsevier, 2017) Si, Hang; Ren, Yuxue; Lei, Na; Gu, Xianfeng
    This paper considers a set of twisted line segments in 3d such that they form a knot (a closed curve) or a link of two closed curves. Such line segments appear on the boundary of a family of 3d indecomposable polyhedra (like the Schönhardt polyhedron) whose interior cannot be tetrahedralised without additional vertices added. On the other hand, a 3d (non-convex) polyhedron whose boundary contains such line segments may still be decomposable as long as the twist is not too large. It is therefore interesting to consider the question: when there exists a tetrahedralisation contains a given set of knotted or linked line segments? In this paper, we studied a simplified question with the assumption that all vertices of the line segments are in convex position. It is straightforward to show that no tetrahedralisation of 6 vertices (the three-line-segments case) can contain a trefoil knot. Things become interesting when the number of line segments increases. Since it is necessary to create new interior edges to form a tetrahedralisation. We provided a detailed analysis for the case of a set of 4 line segments. This leads to a crucial condition on the orientation of pairs of new interior edges which determines whether this set is decomposable or not. We then prove a new theorem about the decomposability for a set of n (n ≥ 3) knotted or linked line segments. This theorem implies that the family of polyhedra generalised from the Schonhardt polyhedron by Rambau [1] are all indecomposable.
  • Item
    Preface
    (Amsterdam [u.a.] : Elsevier, 2016) Canann, Scott; Owen, Steven; Si, Hang
    [No abstract available]
  • Item
    Tetrahedral Mesh Improvement Using Moving Mesh Smoothing and Lazy Searching Flips
    (Amsterdam [u.a.] : Elsevier, 2016) Dassi, Franco; Kamenski, Lennard; Si, Hang
    We combine the new moving mesh smoothing, based on the integration of an ordinary differential equation coming from a given functional, with the new lazy flip technique, a reversible edge removal algorithm for local mesh quality improvement. These strategies already provide good mesh improvement on themselves, but their combination achieves astonishing results not reported so far. Provided numerical comparison with some publicly available mesh improving software show that we can obtain final tetrahedral meshes with dihedral angles between 40° and 123°.
  • Item
    On Indecomposable Polyhedra and the Number of Steiner Points
    (Amsterdam [u.a.] : Elsevier, 2015) Goerigk, Nadja; Si, Hang
    The existence of indecomposable polyhedra, that is, the interior of every such polyhedron cannot be decomposed into a set of tetrahedra whose vertices are all of the given polyhedron, is well-known. However, the geometry and combinatorial structure of such polyhedra are much less studied. In this article, we investigate the structure of some well-known examples, the so-called Schönhardt polyhedron [10] and the Bagemihl's generalization of it [1], which will be called Bagemihl's polyhedra. We provide a construction of an additional point, so-called Steiner point, which can be used to decompose the Schönhardt and the Bagemihl's polyhedra. We then provide a construction of a larger class of three-dimensional indecomposable polyhedra which often appear in grid generation problems. We show that such polyhedra have the same combinatorial structure as the Schönhardt's and Bagemihl's polyhedra, but they may need more than one Steiner point to be decomposed. Given such a polyhedron with n ≥ 6 vertices, we show that it can be decomposed by adding at most interior Steiner points. We also show that this number is optimal in theworst case.
  • Item
    Anisotropic Finite Element Mesh Adaptation via Higher Dimensional Embedding
    (Amsterdam [u.a.] : Elsevier, 2015) Dassi, Franco; Si, Hang; Perotto, Simona; Streckenbach, Timo
    In this paper we provide a novel anisotropic mesh adaptation technique for adaptive finite element analysis. It is based on the concept of higher dimensional embedding, which was exploited in [1], [2], [3], [4] to obtain an anisotropic curvature adapted mesh that fits a complex surface in R3. In the context of adaptive finite element simulation, the solution (which is an unknown function f : Ω ⊂ d → ) is sought by iteratively modifying a finite element mesh according to a mesh sizing field described via a (discrete) metric tensor field that is typically obtained through an error estimator. We proposed to use a higher dimensional embedding, Φf (x):= (x1, …, xd, s f (x1, …, xd), s ▿ f (x1, …, xd))t, instead of the mesh sizing field for the mesh adaption. This embedding contains both informations of the function f itself and its gradient. An isotropic mesh in this embedded space will correspond to an anisotropic mesh in the actual space, where the mesh elements are stretched and aligned according to the features of the function f. To better capture the anisotropy and gradation of the mesh, it is necessary to balance the contribution of the components in this embedding. We have properly adjusted Φf (x) for adaptive finite element analysis. To better understand and validate the proposed mesh adaptation strategy, we first provide a series of experimental tests for piecewise linear interpolation of known functions. We then applied this approach in an adaptive finite element solution of partial differential equations. Both tests are performed on two-dimensional domains in which adaptive triangular meshes are generated. We compared these results with the ones obtained by the software BAMG – a metric-based adaptive mesh generator. The errors measured in the L2 norm are comparable. Moreover, our meshes captured the anisotropy more accurately than the meshes of BAMG.
  • Item
    Generalized Regular Quadrilateral Mesh Generation based on Surface Foliation
    (Amsterdam [u.a.] : Elsevier, 2017) Lei, Na; Zheng, Xiaopeng; Si, Hang; Luo, Zhongxuan; Gu, Xianfeng
    This work introduces a novel algorithm for quad-mesh generation based on surface foliation theory. The algorithm is based on the equivalence among colorable quad-meshes, measure foliations and holomorphic differentials. The holomorphic differentials can be obtained by graph-valued harmonic maps. The algorithm has several merits: it can be applied for surfaces with general topologies; the resulting quad-meshes have global tensor product structure and the least number of singularities; the algorithmic pipeline is fully automatic. The experimental results demonstrate the efficiency and efficacy of the proposed method.
  • Item
    Grain boundary assisted photocurrent collection in thin film solar cells
    (Les Ulis : EDP Sciences, 2015) Harndt, Susanna; Kaufmann, Christian A.; Lux-Steiner, Martha C.; Klenk, Reiner; Nürnberg, Reiner
    The influence of absorber grain boundaries on the photocurrent transport in chalcopyrite based thin film solar cells has been calculated using a two dimensional numerical model. Considering extreme cases, the variation in red response is more expressed than in one dimensional models. These findings may offer an explanation for the strong influence of buffer layer preparation on the spectral response of cells with small grained absorbers.
  • Item
    On Tetrahedralisations of Reduced Chazelle Polyhedra with Interior Steiner Points
    (Amsterdam [u.a.] : Elsevier, 2016) Si, Hang; Goerigk, Nadja
    The non-convex polyhedron constructed by Chazelle, known as the Chazelle polyhedron [4], establishes a quadratic lower bound on the minimum number of convex pieces for the 3d polyhedron partitioning problem. In this paper, we study the problem of tetrahedralising the Chazelle polyhedron without modifying its exterior boundary. It is motivated by a crucial step in tetrahedral mesh generation in which a set of arbitrary constraints (edges or faces) need to be entirely preserved. The goal of this study is to gain more knowledge about the family of 3d indecomposable polyhedra which needs additional points, so-called Steiner points, to be tetrahedralised. The requirement of only using interior Steiner points for the Chazelle polyhedron is extremely challenging. We first “cut off” the volume of the Chazelle polyhedron by removing the regions that are tetrahedralisable. This leads to a 3d non-convex polyhedron whose vertices are all in the two slightly shifted saddle surfaces which are used to construct the Chazelle polyhedron. We call it the reduced Chazelle polyhedron. It is an indecomposable polyhedron. We then give a set of (N + 1)2 interior Steiner points that ensures the existence of a tetrahedralisation of the reduced Chazelle polyhedron with 4(N + 1) vertices. The proof is done by transforming a 3d tetrahedralisation problem into a 2d edge flip problem. In particular, we design an edge splitting and flipping algorithm and prove that it gives to a tetrahedralisation of the reduced Chazelle polyhedron.
  • Item
    Guaranteed quality isotropic surface remeshing based on uniformization
    (Amsterdam [u.a.] : Elsevier, 2017) Ma, Ming; Yu, Xiaokang; Lei, Na; Si, Hang; Gu, Xianfeng
    Surface remeshing plays a significant role in computer graphics and visualization. Numerous surface remeshing methods have been developed to produce high quality meshes. Generally, the mesh quality is improved in terms of vertex sampling, regularity, triangle size and triangle shape. Many of such surface remeshing methods are based on Delaunay refinement. In particular, some surface remeshing methods generate high quality meshes by performing the planar Delaunay refinement on the conformal uniformization domain. However, most of these methods can only handle topological disks. Even though some methods can cope with high-genus surfaces, they require partitioning a high-genus surface into multiple simply connected segments, and remesh each segment in the parameterized domain. In this work, we propose a novel surface remeshing method based on uniformization theorem using dynamic discrete Yamabe flow and Delaunay refinement, which is capable of handling surfaces with complicated topologies, without the need of partitioning. The proposed method has the following merits: Dimension deduction, it converts all 3D surface remeshing to 2D planar meshing; Theoretic rigor, the existence of the constant curvature measures and the lower bound of the corner angles of the generated meshes can be proven. Experimental results demonstrate the efficiency and efficacy of our proposed method.
  • Item
    An Anisoptropic Surface Remeshing Strategy Combining Higher Dimensional Embedding with Radial Basis Functions
    (Amsterdam [u.a.] : Elsevier, 2016) Dassi, Franco; Farrell, Patricio; Si, Hang
    Many applications heavily rely on piecewise triangular meshes to describe complex surface geometries. High-quality meshes significantly improve numerical simulations. In practice, however, one often has to deal with several challenges. Some regions in the initial mesh may be overrefined, others too coarse. Additionally, the triangles may be too thin or not properly oriented. We present a novel mesh adaptation procedure which greatly improves the problematic input mesh and overcomes all of these drawbacks. By coupling surface reconstruction via radial basis functions with the higher dimensional embedding surface remeshing technique, we can automatically generate anisotropic meshes. Moreover, we are not only able to fill or coarsen certain mesh regions but also align the triangles according to the curvature of the reconstructed surface. This yields an acceptable trade-off between computational complexity and accuracy.