Search Results

Now showing 1 - 2 of 2
  • Item
    On Indecomposable Polyhedra and the Number of Steiner Points
    (Amsterdam [u.a.] : Elsevier, 2015) Goerigk, Nadja; Si, Hang
    The existence of indecomposable polyhedra, that is, the interior of every such polyhedron cannot be decomposed into a set of tetrahedra whose vertices are all of the given polyhedron, is well-known. However, the geometry and combinatorial structure of such polyhedra are much less studied. In this article, we investigate the structure of some well-known examples, the so-called Schönhardt polyhedron [10] and the Bagemihl's generalization of it [1], which will be called Bagemihl's polyhedra. We provide a construction of an additional point, so-called Steiner point, which can be used to decompose the Schönhardt and the Bagemihl's polyhedra. We then provide a construction of a larger class of three-dimensional indecomposable polyhedra which often appear in grid generation problems. We show that such polyhedra have the same combinatorial structure as the Schönhardt's and Bagemihl's polyhedra, but they may need more than one Steiner point to be decomposed. Given such a polyhedron with n ≥ 6 vertices, we show that it can be decomposed by adding at most interior Steiner points. We also show that this number is optimal in theworst case.
  • Item
    On Tetrahedralisations of Reduced Chazelle Polyhedra with Interior Steiner Points
    (Amsterdam [u.a.] : Elsevier, 2016) Si, Hang; Goerigk, Nadja
    The non-convex polyhedron constructed by Chazelle, known as the Chazelle polyhedron [4], establishes a quadratic lower bound on the minimum number of convex pieces for the 3d polyhedron partitioning problem. In this paper, we study the problem of tetrahedralising the Chazelle polyhedron without modifying its exterior boundary. It is motivated by a crucial step in tetrahedral mesh generation in which a set of arbitrary constraints (edges or faces) need to be entirely preserved. The goal of this study is to gain more knowledge about the family of 3d indecomposable polyhedra which needs additional points, so-called Steiner points, to be tetrahedralised. The requirement of only using interior Steiner points for the Chazelle polyhedron is extremely challenging. We first “cut off” the volume of the Chazelle polyhedron by removing the regions that are tetrahedralisable. This leads to a 3d non-convex polyhedron whose vertices are all in the two slightly shifted saddle surfaces which are used to construct the Chazelle polyhedron. We call it the reduced Chazelle polyhedron. It is an indecomposable polyhedron. We then give a set of (N + 1)2 interior Steiner points that ensures the existence of a tetrahedralisation of the reduced Chazelle polyhedron with 4(N + 1) vertices. The proof is done by transforming a 3d tetrahedralisation problem into a 2d edge flip problem. In particular, we design an edge splitting and flipping algorithm and prove that it gives to a tetrahedralisation of the reduced Chazelle polyhedron.