Search Results

Now showing 1 - 3 of 3
  • Item
    The influence of Sb doping on the local structure and disorder in thermoelectric ZnO:Sb thin films
    (Lausanne : Elsevier, 2023) Ribeiro, Joana M.; Rodrigues, Frederico J.; Correia, Filipe C.; Pudza, Inga; Kuzmin, Alexei; Kalinko, Aleksandr; Welter, Edmund; Barradas, Nuno P.; Alves, Eduardo; LaGrow, Alec P.; Bondarchuk, Oleksandr; Welle, Alexander; Telfah, Ahmad; Tavares, Carlos J.
    Thermoelectric transparent ZnO:Sb thin films were deposited by magnetron sputtering, with Sb content varying between 2 and 14 at%. As evidenced by X-ray diffraction analysis, the films crystallize in the ZnO wurtzite structure for lower levels of Sb-doping, developing a degree of amorphization for higher levels of Sb-doping. Temperature-dependent (10–300 K) X-ray absorption spectroscopy studies of the produced thin films were performed at the Zn and Sb K-edges to shed light on the influence of Sb doping on the local atomic structure and disorder in the ZnO:Sb thin films. The analysis of the Zn K-edge EXAFS spectra by the reverse Monte Carlo method allowed to extract detailed and accurate structural information in terms of the radial and bond angle distribution functions. The obtained results suggest that the introduction of antimony to the ZnO matrix promotes static disorder, which leads to partial amorphization with very small crystallites (∼3 nm) for large (12–14 at%) Sb content. Rutherford backscattering spectrometry (RBS) experiments enabled the determination of the in-depth atomic composition profiles of the films. The film composition at the surfaces determined by X-ray photoelectron spectroscopy (XPS) matches that of the bulk determined by RBS, except for higher Sb-doping in ZnO films, where the concentration of oxygen determined by XPS is smaller near the surface, possibly due to the formation of oxygen vacancies that lead to an increase in electrical conductivity. Traces of Sb–Sb metal bonds were found by XPS for the sample with the highest level of Sb-doping. Time-of-flight secondary ion mass spectrometry obtained an Sb/Zn ratio that follows that of the film bulk determined by RBS, although Sb is not always homogeneous, with samples with smaller Sb content (2 and 4 at% of Sb) showing a larger Sb content closer to the film/substrate interface. From the optical transmittance and reflectance curves, it was determined that the films with the lower amount of Sb doping have larger optical band-gaps, in the range of 2.9–3.2 eV, while the partially amorphous films with higher Sb content have smaller band-gaps in the range of 1.6–2.1 eV. Albeit the short-range crystalline order (∼3 nm), the film with 12 at% of Sb has the highest absolute Seebeck coefficient (∼56 μV/K) and a corresponding thermoelectric power factor of ∼0.2 μW·K−2·m−1.
  • Item
    Study of TiAl thin films on piezoelectric CTGS substrates as an alternative metallization system for high-temperature SAW devices
    (Rio de Janeiro : Elsevier, 2021) Seifert, Marietta; Lattner, Eric; Menzel, Siegfried B.; Oswald, Steffen; Gemming, Thomas
    Ti/Al multilayer films with a total thickness of 200 nm were deposited on the high-temperature (HT) stable piezoelectric Ca3TaGa3Si2O14 (CTGS) as well as on thermally oxidized Si (SiO2/Si) reference substrates. The Ti–Al films were characterized regarding their suitability as an alternative metallization for electrodes in HT surface acoustic wave devices. These films provide the advantage of significantly lower costs and in addition also a significantly lower density as compared to Pt, which allows a greater flexibility in device design. To realize a thermal stability of the films, AlNO cover as well as barrier layers at the interface to the substrate were applied. The samples were annealed for 10 h at up to 800 °C in high vacuum (HV) and at 600 °C in air and analyzed regarding the γ-TiAl phase formation, film morphology, and possible degradation. The Ti/Al films were prepared either by magnetron sputtering or by e-beam evaporation and the different behavior arising from the different deposition method was analyzed and discussed. For the evaporated Ti/Al films, AlNO barriers with a lower O content were used to evaluate the influence of the composition of the AlNO on the HT stability. The sputter-deposited Ti/Al films showed an improved γ-TiAl phase formation and HT stability (on SiO2/Si up to 800 °C in HV and 600 °C in air, on CTGS with a slight oxidation after annealing at 800 °C in HV) as compared to the evaporated samples, which were only stable up to 600 °C in HV and in air.
  • Item
    Grain boundary assisted photocurrent collection in thin film solar cells
    (Les Ulis : EDP Sciences, 2015) Harndt, Susanna; Kaufmann, Christian A.; Lux-Steiner, Martha C.; Klenk, Reiner; Nürnberg, Reiner
    The influence of absorber grain boundaries on the photocurrent transport in chalcopyrite based thin film solar cells has been calculated using a two dimensional numerical model. Considering extreme cases, the variation in red response is more expressed than in one dimensional models. These findings may offer an explanation for the strong influence of buffer layer preparation on the spectral response of cells with small grained absorbers.