Search Results

Now showing 1 - 4 of 4
  • Item
    Gas-discharge plasma-assisted functionalization of titanium implant surfaces
    (Baech : Trans Tech Publications Ltd., 2010) Schröder, Karsten; Finke, Birgit; Polak, Martin; Lüthen, Frank; Nebe, Barbara; Rychly, Joachim; Bader, Rainer; Lukowski, Gerold; Walschus, Uwe; Schlosser, Michael; Ohl, Andreas; Weltmann, Klaus Dieter
    A crucial factor for in-growth of metallic implants in the bone stock is the rapid cellular acceptance whilst prevention of bacterial adhesion on the surface. Such contradictorily adhesion events could be triggered by surface properties. There already exists fundamental knowledge about the influence of physicochemical surface properties like roughness, titanium dioxide modifications, cleanness, and (mainly ceramic) coatings on cell and microbial behavior in vitro and in vivo. The titanium surface can be equipped with antimicrobial properties by plasma-based copper implantation, which allows the release and generation of small concentrations of copper ions during contact with water-based biological liquids. Additionally, the titanium surface was equipped with amino groups by the deposition of an ultrathin plasma polymer. This coating on the one hand does not significantly reduce the generation of copper ions, and on the other hand improves the adhesion and spreading of osteoblast cells. The process development was accompanied by physicochemical surface analyses like XPS, FTIR, contact angle, SEM, and AFM. Very thin modified layers were created, which are resistant to hydrolysis and delamination. These titanium surface functionalizations were found to have either an antimicrobial activity or cell-adhesive properties. Intramuscular implantation of titanium samples coated with the cell-adhesive plasma polymer in rats revealed a reduced inflammation reaction compared to uncoated titanium. © (2010) Trans Tech Publications.
  • Item
    Solid carbon active screen plasma nitrocarburizing of AISI 316L stainless steel in cold wall reactor: influence of plasma conditions
    (Rio de Janeiro : Elsevier, 2020) Jafarpour, Saeed M.; Puth, Alexander; Dalke, Anke; Böcker, Jan; Pipa, AndreiV.; Röpcke, Jürgen; van Helden, Jean-Pierre H.; Biermann, Horst
    Low temperature plasma nitrocarburizing processes are widely used surface treatment techniques to improve the surface hardness and wear resistance of stainless steels without loss of their excellent corrosion resistance. In the present study, plasma nitrocarburizing based on the active screen technology was applied in an industrial-scale cold wall reactor for the treatment of AISI 316L. Different technological aspects of a cold wall active screen plasma nitrocarburizing (ASPNC) reactor are addressed. The current study compiles recent achievements for the ASPNC treatment using an active screen made of carbon fibre-reinforced carbon under varying plasma conditions. In addition, it is shown that utilizing an active screen made of carbon opens up the possibility to control the structural properties of expanded austenite by the variation of the plasma conditions. It is revealed that for the ASPNC treatment using an active carbon screen, the high reactivity of the generated plasma at the carbon surface suppresses the requirement to apply a bias discharge.
  • Item
    Energy Flux Characterisation of Atmospheric Pressure Plasma Spray Torches with Passive Thermal Probes
    (Boston, Mass. : Springer, 2022) Reck, Kristian A.; Hansen, Luka; Stummer, Maximilian; Kewitz, Thorben; Testrich, Holger; Hinterer, Andreas; Foest, Rüdiger; Kersten, Holger
    Passive thermal probes were applied on two different plasma spraying devices to gain a detailed understanding of the energy flux towards the substrate under atmospheric pressure. The challenge of very high thermal load was solved by using an advanced time-resolved measuring and evaluation technique. The combination with a controlled movement of the jets allowed to obtain insightful radial profiles. The energy flux to the substrate changes linearly to the electrical input power. When adding diatomic gases (H2/N2) to the gas mixture the energy flux increases significantly, suggesting a more efficient energy transport. For increasing the axial distance, the energy flux shows a quadratic reduction. The obtained radial profiles are exemplarily utilized to show the inhomogeneous effect of powder injection on the energy flux distribution.
  • Item
    Self-Consistent Cathode–Plasma Coupling and Role of the Fluid Flow Approach in Torch Modeling
    (Boston, Mass. : Springer, 2021) Baeva, Margarita; Zhu, Tao; Kewitz, Thorben; Testrich, Holger; Foest, Rüdiger
    A two-dimensional and stationary magnetohydrodynamic model of a plasma spray torch operated with argon is developed to predict the plasma properties in a steady operating mode. The model couples a submodel of a refractory cathode and its non-equilibrium boundary layer to a submodel of the plasma in local thermodynamic equilibrium in a self-consistent manner. The Navier–Stokes equations for a laminar and compressible flow are solved in terms of low and high Mach number numerical approaches. The results show that the Mach number can reach values close to one. Simulations are performed for electric currents of 600 A and 800 A, and gas flow rates of 40, 60, and 80 NLPM. The plasma parameters obtained by the two approaches differ, and the differences become more pronounced for higher currents and gas flow rates. The arc voltage, the electric power, and the thermal efficiency from both the low and high Mach number models of the plasma agree well with experimental findings for a current of 600 A and a flow rate of 40 NLPM. For higher currents and gas flow rates, the results of the low and high Mach number models gradually differ and underline the greater appropriateness of the high Mach number model.