Search Results

Now showing 1 - 2 of 2
  • Item
    The mutual dependence of negative emission technologies and energy systems
    (Cambridge : RSC Publ., 2019) Creutzig, Felix; Breyer, Christian; Hilaire, Jérôme; Minx, Jan; Peters, Glen P.; Socolow, Robert
    While a rapid decommissioning of fossil fuel technologies deserves priority, most climate stabilization scenarios suggest that negative emission technologies (NETs) are required to keep global warming well below 2 °C. Yet, current discussions on NETs are lacking a distinct energy perspective. Prominent NETs, such as bioenergy with carbon capture and storage (BECCS) and direct air carbon capture and storage (DACCS), will integrate differently into the future energy system, requiring a concerted research effort to determine adequate means of deployment. In this perspective, we discuss the importance of energy per carbon metrics, factors of future cost development, and the dynamic response of NETs in intermittent energy systems. The energy implications of NETs deployed at scale are massive, and NETs may conceivably impact future energy systems substantially. DACCS outperform BECCS in terms of primary energy required per ton of carbon sequestered. For different assumptions, DACCS displays a sequestration efficiency of 75–100%, whereas BECCS displays a sequestration efficiency of 50–90% or less if indirect land use change is included. Carbon dioxide removal costs of DACCS are considerably higher than BECCS, but if DACCS modularity and granularity helps to foster technological learning to <100$ per tCO2, DACCS may remove CO2 at gigaton scale. DACCS also requires two magnitudes less land than BECCS. Designing NET systems that match intermittent renewable energies will be key for stringent climate change mitigation. Our results contribute to an emerging understanding of NETs that is notably different to that derived from scenario modelling.
  • Item
    The energy and carbon inequality corridor for a 1.5 °C compatible and just Europe
    (Bristol : IOP Publ., 2021-6-15) Jaccard, Ingram S; Pichler, Peter-Paul; Többen, Johannes; Weisz, Helga
    The call for a decent life for all within planetary limits poses a dual challenge: provide all people with the essential resources needed to live well and, collectively, not exceed the source and sink capacity of the biosphere to sustain human societies. We examine the corridor of possible distributions of household energy and carbon footprints that satisfy both minimum energy use for a decent life and available energy supply compatible with the 1.5 °C target in 2050. We estimated household energy and carbon footprints for expenditure deciles for 28 European countries in 2015 by combining data from national household budget surveys with the environmentally-extended multi-regional input–output model EXIOBASE. We found a top-to-bottom decile ratio (90:10) of 7.2 for expenditure, 3.1 for net energy and 2.6 for carbon. The lower inequality of energy and carbon footprints is largely attributable to inefficient energy and heating technologies in the lower deciles (mostly Eastern Europe). Adopting best technology across Europe would save 11 EJ of net energy annually, but increase environmental footprint inequality. With such inequality, both targets can only be met through the use of CCS, large efficiency improvements, and an extremely low minimum final energy use of 28 GJ per adult equivalent. Assuming a more realistic minimum energy use of about 55 GJ ae−1 and no CCS deployment, the 1.5 °C target can only be achieved at near full equality. We conclude that achieving both stated goals is an immense and widely underestimated challenge, the successful management of which requires far greater room for maneuver in monetary and fiscal terms than is reflected in the current European political discourse.