Search Results

Now showing 1 - 10 of 211
  • Item
    Study of Water Productivity of Industrial Hemp under Hot and Dry Conditions in Brandenburg (Germany) in the Year 2018
    (Basel : MDPI, 2020) Drastig, Katrin; Flemming, Inken; Gusovius, Hans-Jörg; Herppich, Werner B.
    Hemp (Cannabis sativa L.) is a high-yielding multi-purpose crop, but its hydrological functioning is poorly understood. Studies on the interception processes in hemp have been lacking so far. This study contributes to the understanding of the influences of evaporation of intercepted water and other hydrological fluxes within plants of two cultivars, “Santhica 27” and “Ivory”, on the water productivity. To determine water productivity and evaporation from interception, field measurements were conducted on plants of both cultivars at different stages of development. Precipitation (P), throughfall (TF), transpiration (T), and volumetric water content (VWC) were measured along with leaf area index (LAI) and yield of selected plant components. For the entire vegetation period, the cumulative P of 44 mm was converted into 13 mm TF (30%). The inferred evaporation of intercepted water (I) was high at 31 mm (71%). For the assessment water fluxes, the evaporation of intercepted water must be considered in the decision-making process. Besides the LAI, the plant architecture and the meteorological conditions during the cropping cycle seem to be the main factors determining I in the case of plants of both cultivars. Water productivity (WPDM) of the whole plant varied between 3.07 kg m−3 for Ivory and 3.49 for Santhica 27. In the case of bast yield, WPDM was 0.39 kg m-3 for Santhica 27 and 0.45 kg m−3 for Ivory. After the propagation of the uncertainties, the bandwidth of the WPDM of the whole plant was between 0.42 kg m−3 and 2.57 kg m−3. For bast fiber a bandwidth of the WP between 0.06 kg m−3 and 0.33 kg m−3 was calculated. The results show furthermore that even with a precise examination of water productivity, a high bandwidth of local values is revealed on different cultivars. However, generic WP values for fiber crops are not attainable.
  • Item
    Temperature-dependent dynamic compressive properties and failure mechanisms of the additively manufactured CoCrFeMnNi high entropy alloy
    (Oxford : Elsevier Science, 2022) Chen, Hongyu; Liu, Yang; Wang, Yonggang; Li, Zhiguo; Wang, Di; Kosiba, Konrad
    CoCrFeMnNi high entropy alloy (HEA) parts were fabricated by laser powder bed fusion (LPBF), and their dynamic compressive properties at different temperatures as well as the resulting microstructures were analyzed. The HEAs showed an unprecedented strength-ductility combination, especially at a cryogenic temperature of 77 K and a high strain rate of 3000 s−1. Under this testing condition, the yield strength (YS) of the HEAs amounted to 665 MPa. Regardless of the testing temperature, the deformation mechanism of all investigated HEAs was dominated by a synergistic effect consisting of deformation twinning and dislocation pile-up around twins. The fraction of twin boundaries and dislocation density within the deformed microstructure of the HEA correlated with the test temperature. At 77 K, the formation of nanotwins together with dislocation slip prevailed and contributed to pronounced twin-twin and twin-dislocation interactions which effectively restricted the dislocation movement and, hence, contributed to a higher YS as well as strain hardening rate in comparison to that of the HEAs at room temperature of 298 K. The LPBF-fabricated HEAs showed unpronounced thermal softening even at a high testing temperature of 1073 K. Continuous dynamic recrystallization was restricted in the HEA because of its inherent sluggish dislocation kinetics and low stacking fault energy.
  • Item
    Coastal groundwater systems: mapping chloride distribution from borehole and geophysical data
    (Berlin ; Heidelberg : Springer, 2021-1-21) Rahman, Mohammad Azizur; Zhao, Qian; Wiederhold, Helga; Skibbe, Nico; González, Eva; Deus, Nico; Siemon, Bernhard; Kirsch, Reinhard; Elbracht, Jörg
    Information on chloride (Cl) distribution in aquifers is essential for planning and management of coastal zone groundwater resources as well as for simulation and validation of density-driven groundwater models. We developed a method to derive chloride concentrations from borehole information and helicopter-borne electromagnetic (HEM) data for the coastal aquifer in the Elbe-Weser region where observed chloride and electrical conductivity data reveal that the horizontal distribution of salinity is not uniform and does not correlate with the coastline. The integrated approach uses HEM resistivity data, borehole petrography information, grain size analysis of borehole samples as well as observed chloride and electrical conductivity to estimate Cl distribution. The approch is not straightforward due to the complex nature of the geology where clay and silt are present. Possible errors and uncertainties involved at different steps of the method are discussed.
  • Item
    Robust changes in tropical rainy season length at 1.5 °C and 2 °C
    (Bristol : IOP Publ., 2018) Saeed, Fahad; Bethke, Ingo; Fischer, Erich; Legutke, Stephanie; Shiogama, Hideo; Stone, Dáithí A.; Schleussner, Carl-Friedrich
    Changes in the hydrological cycle are among the aspects of climate change most relevant for human systems and ecosystems. Besides trends in overall wetting or drying, changes in temporal characteristics of wetting and drying are of crucial importance in determining the climate hazard posed by such changes. This is particularly the case for tropical regions, where most precipitation occurs during the rainy season and changes in rainy season onset and length have substantial consequences. Here we present projections for changes in tropical rainy season lengths for mean temperature increase of 1.5 °C and 2 °C above pre-industrial levels. Based on multi-ensemble quasi-stationary simulations at these warming levels, our analysis indicates robust changes in rainy season characteristics in large parts of the tropics despite substantial natural variability. Specifically, we report a robust shortening of the rainy season for all of tropical Africa as well as north-east Brazil. About 27% of West Africa is projected to experience robust changes in the rainy season length with a mean shortening of about 7 days under 1.5 °C. We find that changes in the temporal characteristics are largely unrelated to changes in overall precipitation, highlighting the importance of investigating both separately.
  • Item
    Influence of annealing on microstructure and mechanical properties of ultrafine-grained Ti45Nb
    (Amsterdam [u.a.] : Elsevier Science, 2019) Völker, B.; Maier-Kiener, V.; Werbach, K.; Müller, T.; Pilz, S.; Calin, M.; Eckert, J.; Hohenwarter, A.
    Beta-Ti alloys have been intensively investigated in the last years because of their favorable low Young's moduli, biocompatibility and bio-inertness, making these alloys interesting candidates for implant materials. Due to their low mechanical strength, efforts are currently devoted to increasing it. A promising way to improve the strength is to tailor the microstructure using severe plastic deformation (SPD). In this investigation high pressure torsion was used to refine the microstructure of a Ti-45wt.%Nb alloy inducing a grain size of ~50 nm. The main focus of the subsequent investigations was devoted to the thermal stability of the microstructure. Isochronal heat-treatments performed for 30 min in a temperature range up to 500 °C caused an increase of hardness with a peak value at 300 °C before the hardness decreased at higher temperatures. Simultaneously, a distinct temperature-dependent variation of the Young's modulus was also measured. Tensile tests revealed an increase in strength after annealing compared to the SPD-state. Microstructural investigations showed that annealing causes the formation of α-Ti. The findings suggest that the combination of severe plastic deformation with subsequent heat treatment provides a feasible way to improve the mechanical properties of SPD-deformed β-Ti alloys making them suitable for higher strength applications.
  • Item
    Designing the microstructural constituents of an additively manufactured near β Ti alloy for an enhanced mechanical and corrosion response
    (Amsterdam [u.a.] : Elsevier Science, 2022) Hariharan, Avinash; Goldberg, Phil; Gustmann, Tobias; Maawad, Emad; Pilz, Stefan; Schell, Frederic; Kunze, Tim; Zwahr, Christoph; Gebert, Annett
    Additive manufacturing of near β-type Ti-13Nb-13Zr alloys using the laser powder bed fusion process (LPBF) opens up new avenues to tailor the microstructure and subsequent macro-scale properties that aids in developing new generation patient-specific, load-bearing orthopedic implants. In this work, we investigate a wide range of LPBF parameter space to optimize the volumetric energy density, surface characteristics and melt track widths to achieve a stable process and part density of greater than 99 %. Further, optimized sample states were achieved via thermal post-processing using standard capability aging, super-transus (900 °C) and sub-transus (660 °C) heat treatment strategies with varying quenching mediums (air, water and ice). The applied heat treatment strategies induce various fractions of α, martensite (α', α'') in combination with the β phase and strongly correlated with the observed enhanced mechanical properties and a relatively low elastic modulus. In summary, our work highlights a practical strategy for optimizing the mechanical and corrosion properties of a LPBF produced near β-type Ti-13Nb-13Zr alloy via careful evaluation of processing and post-processing steps and the interrelation to the corresponding microstructures. Corrosion studies revealed excellent corrosion resistances of the heat-treated LPBF samples comparable to wrought Ti-13Nb-13Zr alloys.
  • Item
    Investigating Solid and Liquid Desiccant Dehumidification Options for Room Air-Conditioning and Drying Applications
    (Basel : MDPI, 2020) Naik, B. Kiran; Joshi, Mullapudi; Muthukumar, Palanisamy; Sultan, Muhammad; Miyazaki, Takahiko; Shamshiri, Redmond R.; Ashraf, Hadeed
    This study reports on the investigation of the performance of single and two-stage liquid and solid desiccant dehumidification systems and two-stage combined liquid and solid desiccant dehumidification systems with reference to humid climates. The research focus is on a dehumidification system capacity of 25 kW designed for room air conditioning application using the thermal models reported in the literature. RD-type silica gel and LiCl are used as solid and liquid desiccant materials, respectively. In this study, the application of proposed system for deep drying application is also explored. Condensation rate and moisture removal efficiency are chosen as performance parameters for room air conditioning application, whereas air outlet temperature is chosen as performance parameter for deep drying application. Further, for a given range of operating parameters, influences of air inlet humidity ratio, flow rate, and inlet temperature on performance parameters of the systems are investigated. In humid climatic conditions, it has been observed that a two-stage liquid desiccant dehumidification system is more effective for room air conditioning application, and two-stage solid desiccant dehumidification system is more suitable for deep drying application in the temperature range of 50 to 70 °C, while single-stage solid desiccant and two-stage combined liquid and solid desiccant dehumidification systems are more effective for low temperature, i.e., 30 to 50 °C deep drying application.
  • Item
    Influence of substrate dimensionality on the growth mode of epitaxial 3D-bonded GeTe thin films: From 3D to 2D growth
    (Amsterdam [u.a.] : Elsevier Science, 2019) Hilmi, Isom; Lotnyk, Andriy; Gerlach, Jürgen W.; Schumacher, Philipp; Rauschenbach, Bernd
    The pseudo-binary line of Sb2Te3-GeTe contains alloys featuring different crystalline characteristics from two-dimensionally (2D-) bonded Sb2Te3 to three-dimensionally (3D-) bonded GeTe. Here, the growth scenario of 3D-bonded GeTe is investigated by depositing epitaxial GeTe thin films on Si(111) and Sb2Te3-buffered Si(111) substrates using pulsed laser deposition (PLD). GeTe thin films were grown in trigonal structure within a temperature window for epitaxial growth of 210–270 °C on unbuffered Si(111) substrates. An unconventional growth onset was characterized by the formation of a thin amorphous GeTe layer. Nonetheless, the as-grown film is found to be crystalline. Furthermore, by employing a 2D-bonded Sb2Te3 thin film as a seeding layer on Si(111), a 2D growth of GeTe is harnessed. The epitaxial window can substantially be extended especially towards lower temperatures down to 145 °C. Additionally, the surface quality is significantly improved. The inspection of the local structure of the epitaxial films reveals the presence of a superposition of twinned domains, which is assumed to be an intrinsic feature of such thin films. This work might open a way for an improvement of an epitaxy of a 3D-bonded material on a highly-mismatched substrate (e.g. Si (111)) by employing a 2D-bonded seeding layer (e.g. Sb2Te3).
  • Item
    Energy system developments and investments in the decisive decade for the Paris Agreement goals
    (Bristol : IOP Publ., 2021-6-29) Bertram, Christoph; Riahi, Keywan; Hilaire, Jérôme; Bosetti, Valentina; Drouet, Laurent; Fricko, Oliver; Malik, Aman; Pupo Nogueira, Larissa; van der Zwaan, Bob; van Ruijven, Bas; van Vuuren, Detlef; Weitzel, Matthias; Dalla Longa, Francesco; de Boer, Harmen-Sytze; Emmerling, Johannes; Fosse, Florian; Fragkiadakis, Kostas; Harmsen, Mathijs; Keramidas, Kimon; Kishimoto, Paul Natsuo; Kriegler, Elmar; Krey, Volker; Paroussos, Leonidas; Saygin, Deger; Vrontisi, Zoi; Luderer, Gunnar
    The Paris Agreement does not only stipulate to limit the global average temperature increase to well below 2 °C, it also calls for 'making finance flows consistent with a pathway towards low greenhouse gas emissions'. Consequently, there is an urgent need to understand the implications of climate targets for energy systems and quantify the associated investment requirements in the coming decade. A meaningful analysis must however consider the near-term mitigation requirements to avoid the overshoot of a temperature goal. It must also include the recently observed fast technological progress in key mitigation options. Here, we use a new and unique scenario ensemble that limit peak warming by construction and that stems from seven up-to-date integrated assessment models. This allows us to study the near-term implications of different limits to peak temperature increase under a consistent and up-to-date set of assumptions. We find that ambitious immediate action allows for limiting median warming outcomes to well below 2 °C in all models. By contrast, current nationally determined contributions for 2030 would add around 0.2 °C of peak warming, leading to an unavoidable transgression of 1.5 °C in all models, and 2 °C in some. In contrast to the incremental changes as foreseen by current plans, ambitious peak warming targets require decisive emission cuts until 2030, with the most substantial contribution to decarbonization coming from the power sector. Therefore, investments into low-carbon power generation need to increase beyond current levels to meet the Paris goals, especially for solar and wind technologies and related system enhancements for electricity transmission, distribution and storage. Estimates on absolute investment levels, up-scaling of other low-carbon power generation technologies and investment shares in less ambitious scenarios vary considerably across models. In scenarios limiting peak warming to below 2 °C, while coal is phased out quickly, oil and gas are still being used significantly until 2030, albeit at lower than current levels. This requires continued investments into existing oil and gas infrastructure, but investments into new fields in such scenarios might not be needed. The results show that credible and effective policy action is essential for ensuring efficient allocation of investments aligned with medium-term climate targets.
  • Item
    Hydro-Economic Modelling for Water-Policy Assessment Under Climate Change at a River Basin Scale: A Review
    (Basel : MDPI, 2020) Expósito, Alfonso; Beier, Felicitas; Berbel, Julio
    Hydro-economic models (HEMs) constitute useful instruments to assess water-resource management and inform water policy. In the last decade, HEMs have achieved significant advances regarding the assessment of the impacts of water-policy instruments at a river basin or catchment level in the context of climate change (CC). This paper offers an overview of the alternative approaches used in river-basin hydro-economic modelling to address water-resource management issues and CC during the past decade. Additionally, it analyses how uncertainty and risk factors of global CC have been treated in recent HEMs, offering a discussion on these last advances. As the main conclusion, current challenges in the realm of hydro-economic modelling include the representation of the food-energy-water nexus, the successful representation of micro-macro linkages and feedback loops between the socio-economic model components and the physical side, and the treatment of CC uncertainties and risks in the analysis.