Search Results

Now showing 1 - 5 of 5
Loading...
Thumbnail Image
Item

The global aerosol-climate model ECHAM6.3-HAM2.3-Part 2: Cloud evaluation, aerosol radiative forcing, and climate sensitivity

2019, Neubauer, David, Ferrachat, Sylvaine, Siegenthaler-Le Drian, Colombe, Stier, Philip, Partridge, Daniel G., Tegen, Ina, Bey, Isabelle, Stanelle, Tanja, Kokkola, Harri, Lohmann, Ulrike

The global aerosol–climate model ECHAM6.3–HAM2.3 (E63H23) as well as the previous model versions ECHAM5.5–HAM2.0 (E55H20) and ECHAM6.1–HAM2.2 (E61H22) are evaluated using global observational datasets for clouds and precipitation. In E63H23, the amount of low clouds, the liquid and ice water path, and cloud radiative effects are more realistic than in previous model versions. E63H23 has a more physically based aerosol activation scheme, improvements in the cloud cover scheme, changes in the detrainment of convective clouds, changes in the sticking efficiency for the accretion of ice crystals by snow, consistent ice crystal shapes throughout the model, and changes in mixed-phase freezing; an inconsistency in ice crystal number concentration (ICNC) in cirrus clouds was also removed. Common biases in ECHAM and in E63H23 (and in previous ECHAM–HAM versions) are a cloud amount in stratocumulus regions that is too low and deep convective clouds over the Atlantic and Pacific oceans that form too close to the continents (while tropical land precipitation is underestimated). There are indications that ICNCs are overestimated in E63H23. Since clouds are important for effective radiative forcing due to aerosol–radiation and aerosol–cloud interactions (ERFari+aci) and equilibrium climate sensitivity (ECS), differences in ERFari+aci and ECS between the model versions were also analyzed. ERFari+aci is weaker in E63H23 (−1.0 W m−2) than in E61H22 (−1.2 W m−2) (or E55H20; −1.1 W m−2). This is caused by the weaker shortwave ERFari+aci (a new aerosol activation scheme and sea salt emission parameterization in E63H23, more realistic simulation of cloud water) overcompensating for the weaker longwave ERFari+aci (removal of an inconsistency in ICNC in cirrus clouds in E61H22). The decrease in ECS in E63H23 (2.5 K) compared to E61H22 (2.8 K) is due to changes in the entrainment rate for shallow convection (affecting the cloud amount feedback) and a stronger cloud phase feedback. Experiments with minimum cloud droplet number concentrations (CDNCmin) of 40 cm−3 or 10 cm−3 show that a higher value of CDNCmin reduces ERFari+aci as well as ECS in E63H23.

Loading...
Thumbnail Image
Item

Implementation of aerosol-cloud interactions in the regional atmosphere-aerosol model COSMO-Muscat(5.0) and evaluation using satellite data

2017, Dipu, Sudhakar, Quaas, Johannes, Wolke, Ralf, Stoll, Jens, Mühlbauer, Andreas, Sourdeval, Odran, Salzmann, Marc, Heinold, Bernd, Tegen, Ina

The regional atmospheric model Consortium for Small-scale Modeling (COSMO) coupled to the Multi-Scale Chemistry Aerosol Transport model (Muscat) is extended in this work to represent aerosol-cloud interactions. Previously, only one-way interactions (scavenging of aerosol and in-cloud chemistry) and aerosol-radiation interactions were included in this model. The new version allows for a microphysical aerosol effect on clouds. For this, we use the optional two-moment cloud microphysical scheme in COSMO and the online-computed aerosol information for cloud condensation nuclei concentrations (Cccn), replacing the constant Cccn profile. In the radiation scheme, we have implemented a droplet-size-dependent cloud optical depth, allowing now for aerosol-cloud-radiation interactions. To evaluate the models with satellite data, the Cloud Feedback Model Intercomparison Project Observation Simulator Package (COSP) has been implemented. A case study has been carried out to understand the effects of the modifications, where the modified modeling system is applied over the European domain with a horizontal resolution of 0.25°g × g0.25°. To reduce the complexity in aerosol-cloud interactions, only warm-phase clouds are considered. We found that the online-coupled aerosol introduces significant changes for some cloud microphysical properties. The cloud effective radius shows an increase of 9.5g%, and the cloud droplet number concentration is reduced by 21.5g%.

Loading...
Thumbnail Image
Item

EC-Earth3-AerChem: a global climate model with interactive aerosols and atmospheric chemistry participating in CMIP6

2021-9-13, van Noije, Twan, Bergman, Tommi, Le Sager, Philippe, O'Donnell, Declan, Makkonen, Risto, Gonçalves-Ageitos, María, Döscher, Ralf, Fladrich, Uwe, von Hardenberg, Jost, Keskinen, Jukka-Pekka, Korhonen, Hannele, Laakso, Anton, Myriokefalitakis, Stelios, Ollinaho, Pirkka, Pérez García-Pando, Carlos, Reerink, Thomas, Schrödner, Roland, Wyser, Klaus, Yang, Shuting

This paper documents the global climate model EC-Earth3-AerChem, one of the members of the EC-Earth3 family of models participating in the Coupled Model Intercomparison Project Phase 6 (CMIP6). EC-Earth3-AerChem has interactive aerosols and atmospheric chemistry and contributes to the Aerosols and Chemistry Model Intercomparison Project (AerChemMIP). In this paper, we give an overview of the model, describe in detail how it differs from the other EC-Earth3 configurations, and outline the new features compared with the previously documented version of the model (EC-Earth 2.4). We explain how the model was tuned and spun up under preindustrial conditions and characterize the model's general performance on the basis of a selection of coupled simulations conducted for CMIP6. The net energy imbalance at the top of the atmosphere in the preindustrial control simulation is on average −0.09 W m−2 with a standard deviation due to interannual variability of 0.25 W m−2, showing no significant drift. The global surface air temperature in the simulation is on average 14.08 ∘C with an interannual standard deviation of 0.17 ∘C, exhibiting a small drift of 0.015 ± 0.005 ∘C per century. The model's effective equilibrium climate sensitivity is estimated at 3.9 ∘C, and its transient climate response is estimated at 2.1 ∘C. The CMIP6 historical simulation displays spurious interdecadal variability in Northern Hemisphere temperatures, resulting in a large spread across ensemble members and a tendency to underestimate observed annual surface temperature anomalies from the early 20th century onwards. The observed warming of the Southern Hemisphere is well reproduced by the model. Compared with the ECMWF (European Centre for Medium-Range Weather Forecasts) Reanalysis version 5 (ERA5), the surface air temperature climatology for 1995–2014 has an average bias of −0.86 ± 0.05 ∘C with a standard deviation across ensemble members of 0.35 ∘C in the Northern Hemisphere and 1.29 ± 0.02 ∘C with a corresponding standard deviation of 0.05 ∘C in the Southern Hemisphere. The Southern Hemisphere warm bias is largely caused by errors in shortwave cloud radiative effects over the Southern Ocean, a deficiency of many climate models. Changes in the emissions of near-term climate forcers (NTCFs) have significant effects on the global climate from the second half of the 20th century onwards. For the SSP3-7.0 Shared Socioeconomic Pathway, the model gives a global warming at the end of the 21st century (2091–2100) of 4.9 ∘C above the preindustrial mean. A 0.5 ∘C stronger warming is obtained for the AerChemMIP scenario with reduced emissions of NTCFs. With concurrent reductions of future methane concentrations, the warming is projected to be reduced by 0.5 ∘C.

Loading...
Thumbnail Image
Item

Coupling aerosols to (cirrus) clouds in the global EMAC-MADE3 aerosol–climate model

2020, Righi, Mattia, Hendricks, Johannes, Lohmann, Ulrike, Beer, Christof Gerhard, Hahn, Valerian, Heinold, Bernd, Heller, Romy, Krämer, Martina, Ponater, Michael, Rolf, Christian, Tegen, Ina, Voigt, Christiane

A new cloud microphysical scheme including a detailed parameterization for aerosol-driven ice formation in cirrus clouds is implemented in the global ECHAM/MESSy Atmospheric Chemistry (EMAC) chemistry–climate model and coupled to the third generation of the Modal Aerosol Dynamics model for Europe adapted for global applications (MADE3) aerosol submodel. The new scheme is able to consistently simulate three regimes of stratiform clouds – liquid, mixed-, and ice-phase (cirrus) clouds – considering the activation of aerosol particles to form cloud droplets and the nucleation of ice crystals. In the cirrus regime, it allows for the competition between homogeneous and heterogeneous freezing for the available supersaturated water vapor, taking into account different types of ice-nucleating particles, whose specific ice-nucleating properties can be flexibly varied in the model setup. The new model configuration is tuned to find the optimal set of parameters that minimizes the model deviations with respect to observations. A detailed evaluation is also performed comparing the model results for standard cloud and radiation variables with a comprehensive set of observations from satellite retrievals and in situ measurements. The performance of EMAC-MADE3 in this new coupled configuration is in line with similar global coupled models and with other global aerosol models featuring ice cloud parameterizations. Some remaining discrepancies, namely a high positive bias in liquid water path in the Northern Hemisphere and overestimated (underestimated) cloud droplet number concentrations over the tropical oceans (in the extratropical regions), which are both a common problem in these kinds of models, need to be taken into account in future applications of the model. To further demonstrate the readiness of the new model system for application studies, an estimate of the anthropogenic aerosol effective radiative forcing (ERF) is provided, showing that EMAC-MADE3 simulates a relatively strong aerosol-induced cooling but within the range reported in the Intergovernmental Panel on Climate Change (IPCC) assessments.

Loading...
Thumbnail Image
Item

CAPRAM reduction towards an operational multiphase halogen and dimethyl sulfide chemistry treatment in the chemistry transport model COSMO-Muscat(5.04e)

2020, Hoffmann, Erik H., Schrödner, Roland, Tilgner, Andreas, Wolke, Ralf, Herrmann, Hartmut

A condensed multiphase halogen and dimethyl sulfide (DMS) chemistry mechanism for application in chemistry transport models is developed by reducing the CAPRAM DMS module 1.0 (CAPRAM-DM1.0) and the CAPRAM halogen module 3.0 (CAPRAM-HM3.0). The reduction is achieved by determining the main oxidation pathways from analysing the mass fluxes of complex multiphase chemistry simulations with the air parcel model SPACCIM (SPectral Aerosol Cloud Chemistry Interaction Model). These simulations are designed to cover both pristine and polluted marine boundary layer conditions. Overall, the reduced CAPRAM-DM1.0 contains 32 gas-phase reactions, 5 phase transfers, and 12 aqueous-phase reactions, of which two processes are described as equilibrium reactions. The reduced CAPRAM-HM3.0 contains 199 gas-phase reactions, 23 phase transfers, and 87 aqueous-phase reactions. For the aqueous-phase chemistry, 39 processes are described as chemical equilibrium reactions. A comparison of simulations using the complete CAPRAM-DM1.0 and CAPRAM-HM3.0 mechanisms against the reduced ones indicates that the relative deviations are below 5 % for important inorganic and organic air pollutants and key reactive species under pristine ocean and polluted conditions. The reduced mechanism has been implemented into the chemical transport model COSMO-MUSCAT and tested by performing 2D simulations under prescribed meteorological conditions that investigate the effect of stable (stratiform cloud) and more unstable meteorological conditions (convective clouds) on marine multiphase chemistry. The simulated maximum concentration of HCl is of the order of 109 molecules cm−3 and that of BrO is around 1×107 molecules cm−3, reproducing the range of ambient measurements. Afterwards, the oxidation pathways of DMS in a cloudy marine atmosphere have been investigated in detail. The simulations demonstrate that clouds have both a direct and an indirect photochemical effect on the multiphase processing of DMS and its oxidation products. The direct photochemical effect is related to in-cloud chemistry that leads to high dimethyl sulfoxide (DMSO) oxidation rates and a subsequently enhanced formation of methane sulfonic acid compared to aerosol chemistry. The indirect photochemical effect is characterized by cloud shading, which occurs particularly in the case of stratiform clouds. The lower photolysis rate affects the activation of Br atoms and consequently lowers the formation of BrO radicals. The corresponding DMS oxidation flux is lowered by up to 30 % under thick optical clouds. Moreover, high updraught velocities lead to a strong vertical mixing of DMS into the free troposphere predominately under cloudy conditions. The photolysis of hypohalous acids (HOX, X = Cl, Br, or I) is reduced as well, resulting in higher HOX-driven sulfite-to-sulfate oxidation in aerosol particles below stratiform clouds. Altogether, the present model simulations have demonstrated the ability of the reduced mechanism to be applied in studying marine aerosol–cloud processing effects in regional models such as COSMO-MUSCAT. The reduced mechanism can be used also by other regional models for more adequate interpretations of complex marine field measurement data.