Search Results

Now showing 1 - 2 of 2
  • Item
    NDCmitiQ v1.0.0: a tool to quantify and analyse greenhouse gas mitigation targets
    (Katlenburg-Lindau : Copernicus, 2021-9-14) Günther, Annika; Gütschow, Johannes; Jeffery, Mairi Louise
    Parties to the Paris Agreement (PA, 2015) outline their planned contributions towards achieving the PA temperature goal to “hold […] the increase in the global average temperature to well below 2 ∘C above pre-industrial levels and pursuing efforts to limit the temperature increase to 1.5 ∘C” (Article 2.1.a, PA) in their nationally determined contributions (NDCs). Most NDCs include targets to mitigate national greenhouse gas (GHG) emissions, which need quantifications to assess i.a. whether the current NDCs collectively put us on track to reach the PA temperature goals or the gap in ambition to do so. We implemented the new open-source tool “NDCmitiQ” to quantify GHG mitigation targets defined in the NDCs for all countries with quantifiable targets on a disaggregated level and to create corresponding national and global emissions pathways. In light of the 5-year update cycle of NDCs and the global stocktake, the quantification of NDCs is an ongoing task for which NDCmitiQ can be used, as calculations can easily be updated upon submission of new NDCs. In this paper, we describe the methodologies behind NDCmitiQ and quantification challenges we encountered by addressing a wide range of aspects, including target types and the input data from within NDCs; external time series of national emissions, population, and GDP; uniform approach vs. country specifics; share of national emissions covered by NDCs; how to deal with the Land Use, Land-Use Change and Forestry (LULUCF) component and the conditionality of pledges; and establishing pathways from single-year targets. For use in NDCmitiQ, we furthermore construct an emissions data set from the baseline emissions provided in the NDCs. Example use cases show how the tool can help to analyse targets on a national, regional, or global scale and to quantify uncertainties caused by a lack of clarity in the NDCs. Results confirm that the conditionality of targets and assumptions about economic growth dominate uncertainty in mitigated emissions on a global scale, which are estimated as 48.9–56.1 Gt CO2 eq. AR4 for 2030 (10th/90th percentiles, median: 51.8 Gt CO2 eq. AR4; excluding LULUCF and bunker fuels; submissions until 17 April 2020 and excluding the USA). We estimate that 77 % of global 2017 emissions were emitted from sectors and gases covered by these NDCs. Addressing all updated NDCs submitted by 31 December 2020 results in an estimated 45.6–54.1 Gt CO2 eq. AR4 (median: 49.6 Gt CO2 eq. AR4, now including the USA again) and increased coverage.
  • Item
    The IPCC Sixth Assessment Report WGIII climate assessment of mitigation pathways: from emissions to global temperatures
    (Katlenburg-Lindau : Copernicus, 2022) Kikstra, Jarmo S.; Nicholls, Zebedee R. J.; Smith, Christopher J.; Lewis, Jared; Lamboll, Robin D.; Byers, Edward; Sandstad, Marit; Meinshausen, Malte; Gidden, Matthew J.; Rogelj, Joeri; Kriegler, Elmar; Peters, Glen P.; Fuglestvedt, Jan S.; Skeie, Ragnhild B.; Samset, Bjørn H.; Wienpahl, Laura; van Vuuren, Detlef P.; van der Wijst, Kaj-Ivar; Al Khourdajie, Alaa; Forster, Piers M.; Reisinger, Andy; Schaeffer, Roberto; Riahi, Keywan
    While the Intergovernmental Panel on Climate Change (IPCC) physical science reports usually assess a handful of future scenarios, the Working Group III contribution on climate mitigation to the IPCC's Sixth Assessment Report (AR6 WGIII) assesses hundreds to thousands of future emissions scenarios. A key task in WGIII is to assess the global mean temperature outcomes of these scenarios in a consistent manner, given the challenge that the emissions scenarios from different integrated assessment models (IAMs) come with different sectoral and gas-to-gas coverage and cannot all be assessed consistently by complex Earth system models. In this work, we describe the "climate-assessment"workflow and its methods, including infilling of missing emissions and emissions harmonisation as applied to 1202 mitigation scenarios in AR6 WGIII. We evaluate the global mean temperature projections and effective radiative forcing (ERF) characteristics of climate emulators FaIRv1.6.2 and MAGICCv7.5.3 and use the CICERO simple climate model (CICERO-SCM) for sensitivity analysis. We discuss the implied overshoot severity of the mitigation pathways using overshoot degree years and look at emissions and temperature characteristics of scenarios compatible with one possible interpretation of the Paris Agreement. We find that the lowest class of emissions scenarios that limit global warming to "1.5 ° C (with a probability of greater than 50 %) with no or limited overshoot"includes 97 scenarios for MAGICCv7.5.3 and 203 for FaIRv1.6.2. For the MAGICCv7.5.3 results, "limited overshoot"typically implies exceedance of median temperature projections of up to about 0.1 ° C for up to a few decades before returning to below 1.5 ° C by or before the year 2100. For more than half of the scenarios in this category that comply with three criteria for being "Paris-compatible", including net-zero or net-negative greenhouse gas (GHG) emissions, median temperatures decline by about 0.3-0.4 ° C after peaking at 1.5-1.6 ° C in 2035-2055. We compare the methods applied in AR6 with the methods used for SR1.5 and discuss their implications. This article also introduces a "climate-assessment"Python package which allows for fully reproducing the IPCC AR6 WGIII temperature assessment. This work provides a community tool for assessing the temperature outcomes of emissions pathways and provides a basis for further work such as extending the workflow to include downscaling of climate characteristics to a regional level and calculating impacts.